МЕЖДУНАРОДНЫЙ ИНЖЕНЕР-СВАРЩИК

Струйный перенос металла

При мелкокапельном переносе металла торец электрода принимает заострён­ную форму, близкую к форме конуса, однако высота этого конуса невелика и. как правило, не превышает диаметра электрода (см. Рис. 1.8.9, 1.8.18, в. г, и 1.8.19). При дальнейшем повышении тока сварки дуга начинает поглощать всё ббльшую часть торца электрода, приводя к его перегреву и переходу в вязко-жидкое состоя­ние. При этом, под воздействием электромагнитной силы торец электрода принима­ет форму удлинённого цилиндра (напоминающего по форме цилиндрический обра­зец после испытаний на разрыв), высота которого может достигать нескольких диа­метров электрода (см. Рис. 1.8.9, 1.8.18, д, е).

Капли срываются с вершины конуса близко одна за другой, образуя почти не­прерывный поток капель. Конус жидкого металла на торце электрода может удли­няться до такой степени, что может вызывать случайные короткие замыкания, нару­шающие стабильность процесса сварки. Этот тип переноса металла имеет технологические характеризуется близкие к мелкокапельному пере­носу.

Струйно-вращательный перенос металла

При дальнейшем повышении тока сварки наблюдается следующее преобразо­вание типа переноса металла. Удлинённый конус вязко-жидкого металла теряет ус­тойчивость и начинает вращаться под действием магнитного поля вызываемого вы­соким током сварки. Вращение вытянутой части торца электрода может описывать форму конуса или даже спирали. В этих условиях перенос металла уже не является более аксиальным; капли начинают отрываться в сторону от оси электрода, иногда, почти в радиальном направлении к нему. При этом, обычно, образуется много мел­ких брызг металла. Достижение струйного переноса с вращением облегчается при увеличении вылета электрода.

В связи с тем, что при струйных типах переноса металла вытянутая часть торца электрода находится внутри дуги предполагается, что температура капель и образо­вание сварочных дымов в этих условиях повышается. Струйные типы переноса ме­талла достигаются, обычно, применительно к стальным электродным проволокам и не наблюдаются для других материалов электродов.

Струйный перенос металла

Пример смешанного переноса «Короткие замыкания - Мепкокапельный»

Электронный источник питания Малоуглеродистая электродная проволока диаметром 1,0 мм, Uует = 21 В. U0 = 20,7 В, /„ = 161 A, Vnnp = 7,0 м/мин, VC9 = 30 см/мин, вылет электрода =

18 мм, защитный газ Аг+5%02

Смешанный перенос «Короткие замыкания - Струйный»

Этот тип смешанного переноса наблюдается в тех же условиях, что и преды­дущий, за исключением того, что дуга теперь более длинная. Это позволяет (после окончания короткого замыкания) сформироваться на торце электрода конусу жидко­го металла.

Струйный перенос металла

Пример смешанного переноса «Короткие замыкания - Струйный»

Условия сварки примерно теже, что и для эксперимента показанного но U^m =

24 В, U0 - 23.1 В. /св = 158 А

Смешанный перенос «Короткие замыкания - Крупно капельный Отклонён­ный».

Перенос металла с короткими замыканиями при сварке MAG в среде СОг, обычно, имеет элементы крупнокапельного отклонённого переноса. С другой стороны, такой тип переноса может наблюдается и в случае сварки MIG, если установлены не оптимальные параметры процесса. На Рис. показан та­кой пример для случая, когда напряжение дуги (длина дуги) выбрано слишком высо­ким.

Пример переноса метапла с короткими замыканиями, имеющего элементы крупнокапельного отклоненного переноса

Электронный источник питания Малоуглеродистая электродная проволока диаметром 1,0 мм. U0 = 20,5 В; /и = 121 A, Vnnp = 5.7 м/мин. Vct = 30 см/мин. выпет электрода = 18 мм. за­щитный газ Аг+5%02

Смешанный перенос «Крупнокапельный - Мелкокапельный»

Этот тип смешанного переноса металла вызывается чрезмерными колебания­ми тока выдаваемыми источником питания в ответ на изменения электрического со­противления на участке сварочной цепи «вылет электрода - капля - дуга» при фор­мировании и отделении капли. В общей форме, по мере роста капли электрическое сопротивление повышается, что приводит к понижению тока, к снижению скорости расплавления электрода и к увеличению вылета электрода. При этом, из-за сниже­ния тока растёт размер, который могут достигать капли (до нескольких диаметров электрода, т. е., больше, чем при крупнокапельном переносе металла). После отде­ления капли и, соответствующего снижения электрического сопротивления на дан­ном участке сварочной цепи, ток сварки возрастает. При этом, его значение может превысить уровень критического тока, что может привести к формированию мелких капель электродного металла. Особенности смешан­ного переноса такого типа определяются характеристиками источника питания.

Струйный перенос металла

Пример смешанного переноса метапла «Крупнокапельный - Мелкокапепьный»

Эпектронный источник питания Малоуглеродистая электродная проволока диаметром 1.0 мм. U0 = 27.9 В. /с, = 166 A. Vanp = 6.3 м/мин. Vc, = 30 см/мин. вылет электрода = 18 мм. за­щитный газ Аг+5%02

Смешанный перенос «Крупнокапельный - С Короткими Замыканиями - Струйный».

В некоторых случаях, комбинация различных факторов (типа газовой защиты, размеров капель, динамических свойств источника питания, длины дуги и др.) может приводить к таким значительным изменениям тока, что после отделения капли он может существенно превышать уровень критического тока, вызывая возникновение струйного переноса, как показано на Рис. 1.8.24 (кадры 1045 ... 1090). Обычно в этих условиях, капля перед отделением от торца электрода касается поверхности сва­рочной ванны, вызывая короткие замыкания.

Струйный перенос металла

Рис. 1.8.24 Пример смешанного переноса металла «Крупнокапельный - с Короткими Замы­каниями - Мелкокапельный».

Электронный источник питания. Малоуглеродистая электродная проволока диаметром 1,0 мм, U0 = 27.5 В; 1св = 169 A; Vnnp = 6,5 м/мин; Vce = 36 см/мин; вылет электрода =18 мм; за­щитный газ Аг+2%02.

Смешанный перенос «Мелкокапельный - Струйный»

Переход струйного переноса металла (кадры 899 ... 906) в мелкока­пельный кадры 1206 ... 1300) и наоборот может вызываться изменения­ми тока равными всего 15 А.

Из приведенного краткого анализа типов смешанного переноса следует, что они вызываются, в основном, нарушениями в работе источников питания или неоп­тимальной регулировкой их параметров. Как правило, смешанный перенос металла является нежелательным и его следует избегать.

Струйный перенос металла

Электронный источник питания. Малоуглеродистая электродная проволока диаметром 1.0 мм; U0 = 28,7 В. /„ = 207 A; Vnnp = 8.7 м/мин; Vce = 36 см/мин; вылет электрода = 18 мм; за­щитный газ Ar+2%Oz.

МЕЖДУНАРОДНЫЙ ИНЖЕНЕР-СВАРЩИК

Гибкие автоматизированные сварочные производства (ГАСП)

Гибкие производственные системы для сборочно-сварочных работ должны обеспечи­вать автоматизацию следующих операций: 1. Сборка под сварку. 2. Загрузочно-разгрузочные работы. 3. Складирование заготовок и сваренных конструкций. 4. Складирование и замена оснастки. 5. …

Пути повышения технологичности сварных конструкций под роботизированную сварку

1. Изменение сварной конструкции и технологии ее изготовления при заданном типе сва­рочного робота. 2. Выбор другого сварочного робота либо оснащение его дополнительными технологиче­скими средствами. 3. Одновременная доработка конструкции, технологии и …

Особенности роботизированной технологии сварки

Эффективность применения роботизированной сварки зависит от технологичности свариваемой конструкции. Разработана специальная методика оценки технологичности, ко­торая позволяет: 1. Выбирать сварные конструкции (СК), как объект роботизированной сварки, из числа пред­варительного отбора сварных …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.