АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД В ПРОКАТНОМ ПРОИЗВОДСТВЕ

МЕХАНИЧЕСКАЯ И УГЛОВАЯ ХАРАКТЕРИСТИКИ СИНХРОННОГО ДВИГАТЕЛЯ

Как было показано, в синхронном Двигателе скорость вращения ротора равна синхронной скорости вращения статора и не зависит от нагрузки, т. е. механическая характеристика синхронного дви­гателя представляет прямую, параллельную оси абсцисс (абсо­лютно жесткая механическая характеристика, рис. 31, а). Однако такую характеристику двигатель имеет при нагрузке от нуля до определенного максимального значения Мтгх. При увеличении нагрузки больше Л4шах двигатель выходит из синхронизма. Для современных синхронных двигателей максимальный момент равен 250—350% от Мн. Для решения вопроса об устойчивой работе дви­гателя существенное значение имеет угловая характеристика, ко­торая устанавливает зависимость момента двигателя от угла 0 Ш = /(9)1- Аналитическое выражение угловой характеристики

легко получить на основании упрощенной векторной диаграммы синхронного двигателя (см. рис 30, в) Так как при построении упрощенной векторной диаграммы принято = 0, то активная

МЕХАНИЧЕСКАЯ И УГЛОВАЯ ХАРАКТЕРИСТИКИ СИНХРОННОГО ДВИГАТЕЛЯ

(11.96)

(11.97)

(II 98) (II 99)

v...... (И 100)

Это выражение является угловой характеристикой синхронного двигателя

M = MmaxSin0. (11.101)

На рис, 31, б приведена угловая характеристика для двигатель­ного и генераторного режимов.

Максимальный момент двигатель развивает при угле 0 = 90°.

ЗУхфЕ0

Рис 31 Механическая (а) и угловая (б) характеристики синхронного дви­гателя

мощности за'бираемая от сети, будет являться и электромагнитной мощностью, передаваемой ротору (Рг = Ра)

Pl^Pa^ Зи1ф11ф COS ф 10-3 кВт.

(II 102)

При дальнейшем увеличении нагрузки растет угол 0, а момент двигателя снижается и двигатель выпадает из синхронизма.

Из уравнения (11.102) видно, что максимальный момент син­хронной машины пря>мо пропорционален напряжению сети £/1ф и э. д. с. Е0, т. е. току возбуждения двигателя. Увеличение тока воз-

МЕХАНИЧЕСКАЯ И УГЛОВАЯ ХАРАКТЕРИСТИКИ СИНХРОННОГО ДВИГАТЕЛЯ

'Іф'іф'

Из векторной диаграммы (см. рис. 30, в) /1фХ5 cos (f = Eq sm 0, откуда

ЛфСов ф =

Xs

р р 3{/1ф£0 sin 6 |

1 3 Xs

Электромагнитный момент синхронного двигателя

Р а _____ Зб^ф Eq

Ма =

sin 0.

М

(ОпХя

буждения повышает максимальный момент и наоборот. Этим свой­ством пользуются при работе привода на ударную нагрузку. В момент пиковой нагрузки (например, при захвате металла вал­ками) повышают ток возбуждения (увеличением напряжения воз­будителя), увеличивая тем самым Л1шах (Е0) и устойчивость двига­теля.

Учитывая, что перегрузочная способность двигателя Я = _ Mmax _ Sin 90_ должна бЫТЬ не ниже 2—З, ЛЄГКО ОПрЄДЄЛИТЬ

угол 0Н*. sin 0Н = 0,5-7-0,33, а значит, 0Н = 30-т-20°.

Синхронные двигатели в прокатных цехах получили широкое распространение для привода нерегулируемых приводов черновой группы клетей непрерывных станов и для вращения мощных гене­раторов в системах Г—Д.

Из тормозных режимов работы в приводе с синхронным двига­телем в основном применяют динамическое торможение. Для этого обмотки статора отключают от сети и замыкают на сопротивления В этом случае двигатель работает в режиме синхронного генера­тора р механические характеристики аналогичны характеристи­кам при динамическом торможении асинхронного двигателя.

Использовать генераторный режим синхронного двигателя с отдачей энергии в сеть для торможения не представляется воз­можным, так как такой режим возможен только при синхронной скорости вращения ротора.

Основным преимуществом синхронных двигателей является высокий cos ф, который может быть равен единице, а также может быть опережающим (примерно 0,8—0,9). В последнем случае дви­гатель будет отдавать^в сеть реактивную мощность и исправлять тем самым cos ф сети потребителя.

Улучшение COS ф легко понять из рассмотрения упрощенной векторной диаграммы (рис. 30, в). Если при той же нагрузке двигателя увеличивать ток возбуждения (перевозбуждать ма - Шину), то это приведет к росту Е0, и суммарный вектор 11фХ3 = е= U 1(ь — Е0 будет менять фазу относительно питающего напряже­ния £71ф. Можно обеспечить такое возбуждение двигателя, чтобы вектор /1фХ5 был перпендикулярен вектору t/ц,, тогда вектор тока /1ф будет совпадать с вектором [/іф, т. е. ф = 0 и cos ф = 1. Дальнейшее увеличение силы тока возбуждения (Е0) приводит к тому, что угол между £/1ф и /хфХ5 становится больше 90° и, сле­довательно, вектор тока /1ф будет опережать вектор £У1ф и угол ф будет отрицательным, т. е. двигатель будет отдавать реактивную энергию в сеть.

При данной полезной мощности двигателя Рх = 3£/1ф/1ф X X cos фЮ-3 ток /1ф, определяющий количество меди в двигателе, увеличивается с уменьшением cos ф, что приводит к увеличению раз­меров двигателя и его стоимости. Одновременно растет количество меди, размеры и стоимость генераторов, трансформаторов, аппа­

ратуры и сети Поэтому электрические станции для потребителей устанавливают тариф на электроэнергию в зависимости от значе­ния cos ф. Чем выше cos ф, тем ниже стоимость электроэнергии по тарифу.

Синхронные двигатели в качестве прокатных более надежны по сравнению с асинхронными Это обусловливается значительно большим (в 3—4 раза) воздушным зазором между статором и рото­ром, а также низким напряжением в роторе двигателя Малый зазор у асинхронного двигателя необходим для уменьшения на­магничивающего тока и улучшения cos ф Кпд синхронного двигателя на 0,5—3% выше, чем у асинхронных двигателей той же мощности К достоинству синхронного двигателя следует также отнести простоту конструкции и надежность в эксплуатации

К числу недостатков электропривода с синхронным двигателем относится необходимость в постоянном токе для возбуждения дви­гателя и необходимость специальных пусковых обмоток для полу­чения приемлемых пусковых характеристик

Синхронный двигатель развивает вращающий момент лишь при условии, когда ротор вращается синхронно с вращающимся ма­гнитным полем статора. При неподвижном роторе вращающий момент отсутствует. Поэтому для разгона синхронного двигателя ротор последнего снабжается короткозамкнутой обмоткой, стержни которой закладываются в полюсные наконечники. Двигатель пу­скается в ход как асинхронный короткозамкнутый При достиже­нии 95—98% синхронной скорости в обмотку возбуждения по­дается постоянный ток и ротор в результате взаимодействия ма­гнитных потоков статора и ротора втягивается в синхронизм и про­должает работать, как синхронный. Так как при синхронной ско­рости пусковая короткозамкнутая обмотка не пересекает магнит­ных линий, то в ней не наводится э д с и по ней не протекает ток.

Пусковые механические характеристики асинхронного режима синхронного двигателя подобны х-арактеристикам короткозамкну­тых двигателей. Подбором материала пусковой обмотки и формы стержней можно получить приемлемую пусковую характеристику. При пуске синхронного двигателя обмотка возбуждения отсоеди­няется от сети постоянного тока, однако оставлять ее разомкнутой нельзя, так э. д. с., наводимая в обмотке ротора, может достигнуть большой величины и может быть нарушена изоляция машины Поэтому на время пуска обмотку возбуждения замыкают на раз­рядное сопротивление, которое в 5—10 раз больше сопротивления обмотки возбуждения. Разрядное сопротивление включается в цепь обмотки до начала пуска и отключается после подачи возбужде­ния. В последнее время на металлургических заводах для упро­щения операции пуска синхронных двигателей все шире внедряется пуск методом самосинхронизации с подключенным возбудителем (так называемый «глухой пуск») В этом случае обмотка возбужде­ния подключается наглухо к якорю возбудителя, который в про­цессе пуска сэмовозбуждается и обеспечивает втягивание двига - теля в синхронизм. Опыт показывает, что при статическом моменте сопротивления на валу двигателя Мс = (0,25-і-0,35) Мн обеспечи­вается нормальный пуск двигателя.

Процесс пуска синхронного двигателя автоматизирован и сво­дится к нажатию кнопки «Пуск» или к повороту рукоятки универ­сального переключателя.

АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД В ПРОКАТНОМ ПРОИЗВОДСТВЕ

Автоматизированные Системы Управления: Технологии, Применение и Решения

Автоматизированные системы управления (ASU) являются важным инструментом для управления процессами в бизнесе. Они помогают организациям улучшать эффективность, повышать производительность, уменьшать расходы и снижать риски. Автоматизированные системы управления включают в себя …

ЧАСТОТНЫЕ МЕТОДЫ АНАЛИЗА

■Ч- В случае подачи на вход разомкнутой одноконтурной системы гармониче­ского колебания синусоидального типа с угловой частотой ш (для удобства сину­соидальную функцию, изображаемую на комплексной плоскости вектором, за­меняют показательной функцией с …

ОСОБЕННОСТИ ПЕРЕХОДНЫХ РЕЖИМОВ

В замкнутых системах автоматического управления под дей­ствием различных возмущений возникает переходный процесс, характеризующий переход системы из одного установившегося состояния к другому. Характер переходного процесса зависит от свойств и характеристик системы, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.