Теория электропривода

Регулирование координат электропривода

Электрический привод служит не только для приведения в движение рабочих органов механизма, но и управляет технологическим процессом приводимого в движение механизма. При управлении технологическим процессом требуется не только поддерживать на заданном уровне такие переменные, как момент двигателя, скорость и ускорение механизма, или изменять их по заданным законам с требуемой по условиям технологии точностью, но одновременно и ограничивать эти переменные уровнем, допустимым по условиям технологии или прочности механического оборудования.

Управление движением электропривода и технологическим процессом установки, как правило, требует регулирования нескольких координат, различных на разных этапах работы – момента или тока, скорости, ускорения, положения.

В зависимости от задач управления электроприводом и механизмом регулирование координат (переменных) может осуществляться с целью:

а) поддержания заданного уровня переменной;

б) изменения переменной по требуемому закону;

в) ограничения переменной допустимым значением;

г) отработки законов движения, задаваемых на входе системы с требуемой точностью.

Возможные способы управления переменными можно разделить на две группы:

а) параметрические способы, используемые в разомкнутых системах;

б) способы автоматического управления, основанные на изменении подводимого к двигателю напряжения, а для двигателей переменного тока еще и частоты при использовании обратных связей, что имеет место в замкнутых системах.

Хотя параметрические способы, основанные на изменении параметров цепей двигателей, широко и применяются в современном электроприводе, однако возможности их ограничены, т. к. во многих случаях при параметрическом регулировании нельзя обеспечить требуемые режимы работы и показатели. Поэтому область использования разомкнутых систем электропривода сужается и они заменяются замкнутыми системами с обратными связями.

Автоматическое регулирование переменных осуществляется по отклонению переменной от заданного значения с помощью отрицательной обратной связи по регулируемой переменной и регулирование по возмущению, предполагающее компенсацию влияния возмущения на регулируемую переменную с помощью положительной обратной связи. Основным является регулирование по отклонению.

И учесть что Регулирование координат электропривода и Регулирование координат электропривода , получим

Регулирование координат электропривода

Регулирование координат электропривода

Где Регулирование координат электропривода , ибо в нормальных АД Регулирование координат электропривода и Регулирование координат электропривода и величиной Регулирование координат электропривода можно пренебречь.

Здесь a1 и a2 - коэффициенты затухания, причем как видно из полученных соотношений a1<a2 , а их отношение Регулирование координат электропривода .

Для нахождения оригиналов, т. е. действительных значений токов Регулирование координат электропривода и Регулирование координат электропривода , будем иметь в виду, что при обозначении р1=-a1 и p2=-a2 принимаются во внимание точные значения р1 и р2 , соответствующие выражению 1 . т. о.

Регулирование координат электропривода

Регулирование координат электропривода

Из этих выражений видно, что вектор каждого тока, кроме установившейся составляющей, изменяющейся с частотой w0эл, содержит 2 свободные составляющие, затухающие с коэффициентами затухания a1 и a2.

Для вычисления момента двигателя необходимо найти комплексно-сопряженный вектор тока ротора Регулирование координат электропривода . С этой целью в выражении для Регулирование координат электропривода перед всеми Регулирование координат электропривода ставится знак минус. Подставив найденное значение Регулирование координат электропривода и значение тока Регулирование координат электропривода в выражение электромагнитного момента, получим его составляющие, обусловленные взаимодействием составляющих токов. Если для примера найти установившееся значение пускового момента двигателя, пропорциональное мнимой части произведения первых членов уравнений для Регулирование координат электропривода и Регулирование координат электропривода , выразить индуктивности через индуктивные сопротивления, то имея в виду, что амплитуда U1M двухфазной машины связана с амплитудой U1M трехфазного напряжения коэффициентом Регулирование координат электропривода , получим

Регулирование координат электропривода

Если сюда подставить значения a1 и a2 из выражения 1 и выполнить некоторые преобразования с учетом того, что Регулирование координат электропривода и Регулирование координат электропривода , получим значение пускового момента

Регулирование координат электропривода

Полное выражение пускового момента имеет вид

Регулирование координат электропривода

Здесь 7 составляющих момента.

Первая - установившийся для данной угловой скорости момент, соответствующий его статической механической характеристике. Следующие две составляющие – апериодические свободные составляющие. Следующие четыре составляющие - периодические составляющие, обусловленные взаимодействием затухающих апериодических (свободных) составляющих с принужденными токами, обусловленными действием напряжения сети. Поэтому они имеют угловую частоту напряжения сети w0эл. Апериодические (свободные) составляющие момента обусловлены взаимодействием свободных токов.

Поскольку, как показано ранее, a1<a2 , то характер изменения момента определяется главным образом переменными составляющими момента, затухающими с коэффициентом a1 . Логарифмический декремент затухания для этих составляющих

Регулирование координат электропривода т. к. Регулирование координат электропривода

Т. к. x1<x1+xm на порядок, а Skp=0,1-0,5 , то Регулирование координат электропривода для колебательной составляющей равен десятым долям единицы. Это значит, что за время затухания совершается десятки колебаний

Регулирование координат электропривода

периодической составляющей момента, которая суммируясь с Муст, создает пики пускового момента, превышающие статический пусковой момент в несколько раз.

Для иллюстрации на рис. приведены кривые переходного процесса к. з. АД при пуске вхолостую, которые отражают рассмотренное влияние электромагнитной инерции, т. е. электромагнитных переходных процессов. Тут же приведена динамическая механическая характеристика двигателя (кривая 1), построенная на основе зависимостей M=f(t) и w=f(t). Еще большие пики момента имеют место при противовключении двигателя с незатухающим полем. Т. о. электромагнитная инерция исключает возможность нарастания момента скачком и существенно ухудшает характер процесса пуска, вызывая большие и многократно повторяемые пики, ускоряющие износ самого двигателя и механического оборудования.

Исследования показывают, что к моменту выхода к. з. АД на устойчивую часть статической механической характеристики (S<Skp) электромагнитные переходные процессы, обусловленные подключением двигателя к сети, практически затухают. В этом случае дальнейший процесс увеличения скорости до w0 (при Мс=0) протекает следующим образом. При S<Skp токи в обмотках Регулирование координат электропривода статора машины, определяемые по статической электромеханической характеристике (см. рис. ) , резко меняются по величине с изменением скорости. Однако, в следствии влияния индуктивности обмоток токи ротора не успевают измениться в соответствии с данной характеристикой. Чем жестче рабочий участок статической механической характеристики и чем меньше приведенный момент инерции, тем в большей степени изменение токов будет отставать от изменения скорости. В результате при w=w0 в процессе пуска вхолостую токи могут быть не равными нулю, поэтому не будет равен 0 и момент. И ротор разгоняется до скорости, превышающей синхронную. Момент становится тормозным, скорость начнет уменьшаться и т. д. (см. кривую 1- динамическую характеристику). Поэтому в конце переходного процесса изменение w и М двигателя имеет затухающий колебательный характер. Чем мягче рабочий участок статической механической характеристики и чем больше момент инерции ротора, тем меньше амплитуда этих колебаний. Практически эти колебания в конце переходного процесса возникают не всегда.

Рассмотренные особенности переходных процессов к. з. АД относятся к числу его существенных недостатков и снижают надежность его работы. Снижения переходных составляющих тока и момента можно достичь путем ограничения темпа нарастания напряжения, приложенного к двигателю при пуске, что осуществляется применением тиристорных регуляторов напряжения, тиристорных преобразователей частоты.

Теория электропривода

Частотно регулируемый электропривод

Производим и продаем частотные преобразователи: Цены на преобразователи частоты(21.01.16г.): Частотники одна фаза в три: Модель Мощность Цена CFM110 0.25кВт 2300грн CFM110 0.37кВт 2400грн CFM110 0.55кВт 2500грн CFM210 1,0 кВт 3200грн …

Переходные процессы при пуске и торможении электропривода с короткозамкнутым Асинхронным двигателем (АД)

В большинстве случаев к. з. АД питается от сети с U1=const и f1=const. Поэтому нелинейность их механических характеристик проявляется полностью как в режимах пуска, так и торможения. Магнитный поток в …

Переходный процесс электропривода с двигателем независимого возбуждения при из­менении магнитного потока

Обычно ДНВ работает при Ф=Фн если U=const или U=var. Необходимость ослабления по­тока возникает когда требуется получить скорость, превышающую основную (согласно тре­бованиям технологического процесса ). Если бы поток изменялся мгновенно, то …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.