Гидравлические ррт
Большое внимание, которое уделяли изобретатели ррт попыткам использовать для них гидравлику, конечно, не случайно.
Рис. 1.19. Гравитационно-магнитный ррт доктора Якобуса |
Хорошо известно, что гидравлические двигатели были широко распространены в средневековой Европе. Водяное колесо служило, по существу, основной базой энергетики средневекового производства вплоть до XVIII в.
В Англии, например, по земельной описи было 5000 водяных мельниц. Но водяное колесо применялось не только в мельницах; постепенно его стали использовать и для привода молота в кузницах, ворота, дробилки, воздуходувных мехов, станков, лесопильных рам и т. д. Однако «водяная энергетика» была привязана к определенным местам рек. Между тем техника требовала двигатель, который мог бы работать везде, где он нужен. Совершенно естественной поэтому была мысль о водяном двигателе не зависимом от реки. Действительно, половина дела — как использовать напор воды — была ясна. Тут накопился достаточный опыт. Оставалась другая половина дела — создать такой напор искусственно.
Способы непрерывно подавать воду снизу вверх были известны еще с античных времен. Самым совершенным из нужных для этого устройств был архимедов винт. Если соединить такой насос с водяным колесом, цикл замкнется. Надо только для начала залить водой бассейн наверху. Вода, стекая из него, будет крутить колесо, а насос, приводимый от него, снова подаст воду вверх. Таким образом, получается гидравлический двигатель, работающий, так сказать, «на самообслуживании». Никакой реки ему не нужно; он сам создаст необходимый напор и одновременно приведет в движение мельницу или станок.
Рис. 1.20. Эскиз гидравлического ррш из тетрадей Леонардо да Винчи |
Для инженера того времени, когда понятия об энергии и законе ее сохранения еще не было, в такой идее не было ничего странного. Множество изобретателей работало, пытаясь воплотить ее в жизнь. Только некоторые великие умы понимали, что это невозможно; и одним из первых среди них был универсальный гений — Леонардо да Винчи. В его тетрадях был найден эскиз гидравлического ррш (рис. 1.20). Горизонтальная линия внизу рисунка показывает уровень в резервуаре, из которого машина берет воду. Машина состоит из двух связанных между собой вращающихся устройств А и В, между которыми установлена чаша,
заполняемая водой. Устройство А представляет собой архимедов винт, подающий воду из нижнего резервуара в чашу. Устройство В вращается, приводимое в движение водой, сливающейся из чаши, и крутит насос А — архимедов винт; отработавшая вода сливается снова в резервуар.
Леонардо вместо известного в то время водяного насоса употребил водяную турбину, сделав мимоходом одно из своих изобретений. Эта турбина В — обращенный насос — архимедов винт. Леонардо понял, что если лить на него воду, то он будет вращаться сам, превратившись из водяного насоса в турбину.
В отличие от современных ему и будущих изобретателей гидравлических ррш такого типа (водяной двигатель + водяной насос) Леонардо знал, что он работать не сможет. Воду, в которой нет разности уровней, он назвал очень образно и точно «мертвой водой» (aqua morta). Он понимал, что падающая вода может в идеальном случае поднять то же количество воды на прежний уровень и только; никакой дополнительной работы она произвести не может. Для реальных условий проведенные им же исследования трения дали основания считать, что и этого не будет, так как «от усилия машины надо отнять то, что теряется от трения в опорах». И Леонардо выносит окончательный приговор: «невозможно привести мельницы в движение посредством мертвой воды».
Эта идея о невозможности получения работы «из ничего» (например, «мертвой воды») была развита потом Р. Декартом и другими мыслителями; в конечном итоге она привела к установлению всеобщего закона сохранения энергии. Но все это произошло намного позже. Пока же изобретатели гидравлических ррш разрабатывали все новые их варианты, объясняя каждый раз свои неудачи теми или иными частными недоработками.
Классическим примером гидравлического ррш может служить машина, показанная на рис. 1.21. Более сложный вариант такого двигателя (рис. 1.22), используемого в практических целях, взят из книги Г. Беккера «Новый театр машин» изданной в Нюренберге (1661). Этот двигатель, предназначенный для вращения точильного камня, был предложен итальянцем Якобом де Страда в 1575 г. (по другим источникам — в 1629 г.). Из нижнего водоема S винтовой насос О шестерней, приводимой в движение от зубчатого колеса R, перекачивает воду в верхний лоток. Отсюда она сливается на колесо С, приводящее через вал
D в движение точильный камень. Через сложную систему передач (червяк и зубчатые колеса Е, G, L и R) колесо С приводит в движение и насос О. Для равномерности движения на вертикальном валу установлен маховик К.
Рис. 1.21. «Типовой» гидравлический двигатель |
Автор настолько уверен, что в поток А вода подается с избытком и ее хватит на все нужды, что через трубку Р сливает часть ее на смачивание точильного камня, у которого работает мастер. Здесь сделано все, что может предусмотреть опытный конструктор. Но в машине, которую он назвал «искусство верчения и кручения с двойной передачей», не учтено только одно обстоятельство: насос никогда не сможет поднять наверх столько воды, сколько нужно для рабочего колеса. Опыт каждый раз именно это и показывал.
Одно из ухищрений, призванных обойти трудности, состояло в том, чтобы заставить воду подниматься (и сливаться) в меньшем перепаде высот. Для этого предусматривалась каскадная система из нескольких последовательно соединенных насосов и рабочих колес. Такая машина, описанная в книге уже известного нам Д. Уилкинса, показана на рис. 1.23. Подъем воды осуществляется винтовым насосом, состоящим из наклонной трубы АВ, в которой вращается ротор LM, показанный внизу отдельно. Он при-
Рис. 1.22. Гидравлический двигатель для привода точильного камня
Водится в движение тремя рабочими колесами Я, /, К, вода на которые подается из трех расположенных каскадом сосудов Е, F, G. В оценке этого двигателя Уилкинс, как и в описанных ранее случаях, оказался на высоте. Он не только отверг этот двигатель из общих соображений, но даже подсчитал, что для вращения спирали «нужно втрое больше воды для вращения, чем то количество, которое она подает наверх».
Отметим, что Уилкинс, как и многие его современники, начал заниматься механикой и гидравликой с попыток изобрести вечный двигатель. Еще один пример стимулирующего действия ррш-1 на науку того времени!
«В первый раз, когда я подумал об этом изобретении, я с трудом удержался от того, чтобы подобно Архимеду не закричать «эврика».
Рис. 1.23. Трехступенчатый каскадный гидравлический ррт с одним архимедовым винтом |
Казалось, что, наконец, найдено легкое средство реализовать вечный двигатель», — писал он в 1684 г., вспоминая свои попытки создать гидравлический ррт из водяного колеса и винта Архимеда для подъема воды. Однако под влиянием экспериментальных неудач он нашел в себе силы провести теоретический анализ и перейти от беспочвенных фантазий к научному анализу.
Уилкинс дал первую классификацию способов построения вечных двигателей:
1) с помощью химической экстракции (эти проекты до нас не дошли);
2) с помощью свойств магнита;
3) с помощью сил тяжести.
Гидравлические ррт он относил (и совершенно правильно) к третьей группе.
В итоге Уилкинс написал четко и однозначно: «Я пришел к выводу, что это устройство не способно работать». Этот любитель науки — епископ — дал в XVII в. достойный пример того, как надо преодолевать заблуждения и находить истину. Если бы ему следовали дипломированные изобретатели ррш XX в.!
Среди других гидравлических ррш следует отметить машину польского иезуита Станислава Сольского, который для приведения в движение рабочего колеса использовал ведро с водой. В верхней точке насос наполнял ведро, оно опускалось, вращая колесо, в нижней точке опрокидывалось и пустое поднималось вверх; затем процесс повторялся. Королю Казимиру эта машина, которую патер демонстрировал в Варшаве (1661 г.), очень понравилась. Однако даже светские успехи титулованных изобретателей не могли скрыть того факта, что гидравлические ррш системы «насос — водяное колесо» на практике не работали. Нужны были новые идеи, используя которые, можно было бы поднять воду с нижнего уровня на верхний без затраты работы, не применяя механический насос. И такие идеи появились — как на основе использования уже известных явлений, так и в связи с новыми физическими открытиями.
Первая из идей, о которой нужно вспомнить, — использование сифона. Это устройство, известное еще с античных времен (оно упоминается у Герона Александрийского), использовалось для переливания воды или масла из сосуда, расположенного выше, в другой, расположенный ниже (рис. 1.24, а). Преимущество такого простого устройства, используемого и до сих пор, заключается в том, что можно отбирать жидкость из верхнего сосуда сверху, не делая отверстия в его дне или стенке. Единственное условие работы сифона — полное предварительное заполнение трубки жидкостью. Поскольку между верхним и нижним сосудами существует разность уровней, высота столба жидкости в длинном колене трубки больше, чем в коротком, на величину Я. Естественно, что жидкость будет самотеком переливаться из верхнего сосуда в нижний.
Возникает вопрос — как же можно использовать сифон для подъема воды, если его назначение обратное — слив воды? Однако именно такая парадоксальная идея была выдвинута около 1600 г. и описана в книге «Новый театр машин и сооружений» (1607 г.) городским архитектором Падуи (Италия) Витторио Зонка. Она заключалась в том, чтобы сделать верхнее, короткое колено сифона толще — больше по диаметру (D d), как показано на рис. 1.24, б. В этом случае, считал Зонка, вода в левом, толстом колене, несмотря на его меньшую, высоту перевесит воду в тонком колене и сифон потянет ее в противоположном
Рис. 1.24. Принцип действия сифонного гидравлического ppm: а — обычный сифон; б — «обратный» сифон с расширенным верхним коленом
Направлении — из нижнего сосуда в верхний. Он писал: «Сила, которая проявляется в толстом колене, будет тянуть то, что входит через более узкое колено». На этом принципе и должен был работать ррт Зонки, показанный на рис. 1.25. Сифон забирал воду из, нижнего водоема справа в узкую трубу (правое колено сифона); вода из широкой трубы (левое колено сифона) сливалась в сосуд, расположенный выше водоема, откуда она подавалась на водяное колесо и сливалась снова в водоем. Колесо через вал вращало мельничный жернов.
Эта оригинальная машина, естественно, работать не смогла, так как по законам гидравлики направление движения жидкости в сифоне зависит только от высот столбов жидкости и не зависит от их диаметра. Однако во времена Зонки об этом четкого представления у практиков не было, хотя уже в работах Стевина по гидравлике вопрос о давлении в жидкости был решен. Он продемонстрировал (1586 г.) «гидростатический парадокс» — давление в жидкости зависит только от высоты ее столба, а не от ее количества. Широко известным это положение стало позже, когда аналогичные опыты были вновь и более широко поставлены Блезом Паскалем (1623-1662 гг.). Но и они не были поняты многими инженерами и уче-
Ными, по-прежнему считавшими, что чем шире сосуд, тем больше давление содержащейся в нем жидкости. Жертвами подобных заблуждений были иногда даже люди, работавшие на самом переднем крае современной им науки и техники. Примером может служить сам Дени Папйн (1647-1714 гг.)— изобретатель не только «папйнова котла» и предохранительного клапана, но и центробежного насоса, а главное — первых паровых машин с цилиндром и поршнем. Папйн даже установил зависимость давления пара от температуры и показал, как получать на ее основе и вакуум, и повышенное давление. Он был учеником Гюйгенса, переписывался с Лейбницем1 и другими
Жернов пышцы |
Водоем |
Рис. 1.25. Сифонный гидравлический ррш В. Зонки для привода мельницы |
Крупными учеными своего времени, состоял членом английского Королевского общества и Академии наук в Неаполе. И вот такой человек, который по праву считается крупным физиком и одним из основоположников современной теплоэнергетики (как создатель парового двигателя), работает и над вечным двигателем! Мало этого, он предлагает такой ррш, ошибочность принципа которого была совершенно очевидна и современной ему науке. Он публикует этот проект в журнале «Философские труды» (Лондон, 1685 г.).
Идея ррш Папйна очень проста — это по существу перевернутая «вверх ногами» труба Зонки (рис. 1.26). Поскольку в широкой части сосуда вес воды больше, его сила должна превосходить силу веса узкого столба воды в тонкой трубе С. Поэтому вода будет постоянно сливаться из
Который и подсказал Д. Папйну идею сочетания поршня с цилиндром.
Конца тонкой трубки в широкий сосуд. Остается только подставить под струю водяное колесо и ррт готов!
Очевидно, что на самом деле так не получится; поверхность жидкости в тонкой трубке установится на том же уровне, что и в толстой, как в любых сообщающихся сосудах (как в правой части рис. 1.26).
Судьба этой идеи Папйна была той же, что и других вариантов гидравлических ррт. Автор к ней больше никогда не возвращался, занявшись более полезным делом — паровой машиной.
История с изобретением Д. Папйном наталкивает на вопрос, постоянно возникающий при изучении истории ррт: чем объяснить поразительную слепоту и странный образ действий многих весьма образованных и, главное, талантливых людей, возникающие каждый раз, как только дело касается изобретения ррт?
Мы вернемся к этому вопросу в дальнейшем. Если же продолжить разговор о Папйне, то непонятно и другое. Мало того, что он не учитывает уже известные законы гидравлики. Ведь в это время он был на должности «временного куратора опытов» при Лондонском королевском обществе. Папйн мог при своих экспериментальных навыках легко проверить предложенную им идею ррт (так же, как он проверял другие свои предложения). Такой эксперимент легко поставить за полчаса, даже не располагая возможностями «куратора опытов». Он этого не сделал и почему-то отправил статью в журнал, ничего не проверив. Парадокс: выдающийся ученый-экспериментатор и теоретик публикует проект, противоречащий уже утвердившейся теории и не проверенный экспериментально! Этот пример — не единственный. Далее, вплоть до нашего времени, мы будем встречаться с не менее парадоксальными случаями в том же роде.
Рис. 1.26. Модель гидравлического ррт Д. Папйна |
В дальнейшем было предложено еще много гидравлических ррт и с другими способами подъема воды, в частности капиллярных и фитильных (что, собственно, одно и то же) [2.4-2.6]. В них предлагалось жидкость (воду или масло) поднимать из нижнего сосуда в верхний по смачиваемому капилляру или фитилю. Действительно, поднять жидкость на определенную высоту таким путем можно, но те же силы поверхностного натяжения, которые обусловили подъем, не дадут жидкости стекать с фитиля (или капилляра) в верхний сосуд.
В заключение этого параграфа рассмотрим еще один, весьма оригинальный ррт, предложенный не менее выдающимся человеком, чем Д. Папйн, — математиком Иоганном Бернулли (1667-1748 гг.), одним из трех знаменитых ученых, принадлежавших к этой фамилии.
Идея двигателя основана на использовании явления осмоса. Осмос (по-гречески «толчок, давление») возникает, когда две разные жидкости разделены так называемой полупроницаемой перегородкой. Такие перегородки проницаемы для одного вещества, но непроницаемы для другого. Они известны с очень давних времен. Животный пузырь, например, пропускает воду, но не пропускает соль или сахар. Если собрать устройство, показанное на рис. 1.27, а, и во внутренний сосуд, погруженный в воду, налить раствор, например, соли, то вода будет просачиваться во внутренний сосуд. Уровень в трубке будет повышаться до тех пор, пока давление раствора на дне трубки не станет равным так называемому осмотическому давлению. Это давление, определенное для каждого раствора, препятствует дальнейшему проникновению воды через перегородку; в трубке устанавливается определенный уровень h. В этом и проявляется осмос. Именно он определяет разбухание семян, погруженных в воду, подъем воды из почвы по стволам деревьев и многие другие биологические процессы.
-Ї |
№ |
Г |
||
■ф |
Г |
Я |
1 |
2 Рис. 1.27. Осмотический ррт Иоганна Бернулли: а — равновесие; б — перетекание жидкости; 1 — вода; 2 — перегородка (мембрана); 3 — раствор соли |
А)- |
Бернулли считал, что осмотическое давление можно использовать для непрерывного поднятия воды с нижнего уровня на верхний. Он основывался на своей теории происхождения речной воды из морской. По его мнению, соленая морская вода, проходя через слои земли, пропускающие воду (но не пропускающие соль), превращается в пресную, поднимается наверх и снова стекает в море в виде рек. Такая постоянная циркуляция воды представляла собой явный perpetuum mobile naturae, поэтому совершенно естественна была мысль создать соответствующий ppm artificae.
Таким образом, говоря современным языком, Бернулли считал верхний слой земли полупроницаемой перегородкой; но даже если бы он обладал этим свойством, то пресная вода просачивалась бы в море, а не наоборот. (Морская вода, как известно, опресняется путем испарения и попадает в реки через атмосферу в виде осадков.)
Легко показать, что осмотическое давление нельзя использовать для подъема воды в гидравлическом ррш. Сделаем так, как предлагал Бернулли: срежем трубку внутреннего сосуда на высоте h < h (т. е. ниже того уровня h, который обеспечивается осмотическим давлением). Тогда вода действительно будет стекать с верхнего уровня на нижний (рис. 1.26,6).
Казалось бы, цель достигнута — вода будет вытекать вечно. Но радоваться рано — струя стекающей жидкости постепенно уменьшается и через некоторое время иссякает совсем. Объясняется это очень просто — ведь сливается не чистая вода, а раствор соли!
Постепенно во внутреннем сосуде раствор будет разбавляться поступающей через перегородку чистой водой, а во внешнем — засоляться. Когда концентрации раствора с обеих сторон перегородки сравняются, вся система придет в равновесие и процесс прекратится; соляной раствор станет такой же «мертвой водой», как та, о которой писал Леонардо да Винчи. Чтобы возобновился процесс осмоса, нужно раствор во внутреннем сосуде все время солить, а во внешнем, напротив, опреснять. Но тогда это уже будет не ррш, а своеобразный «солевой двигатель», который постоянно надо питать солью и пресной водой (так же, как тепловой двигатель топливом и воздухом).
Мы кратко рассмотрели историческую обстановку, определившую название и развитие идеи ррш, основные виды вечных двигателей, а также дискуссию между их сторонниками и противниками. Все это относится к тому периоду, когда представление об энергии и ее сохранении или вообще отсутствовало, или только формировалось применительно к механике. Однако это рассмотрение будет незавершенным, если в нем не отразить историю вечного двигателя Эрнста Бесслера (Орфиреуса) и связанные с ней события. Она происходила в первой половине XVIII в. и завершает, по существу, первый период истории ррш. В ней, как в зеркале, отразились технические, научные и даже психологические аспекты истории ррш; многие из них сохранили значение и до нашего времени.