ТЕОРИЯ сварочных процессов

Газовые среды

Газовая среда в горелке для плазменной обработки материалов должна обеспечивать:

- защиту от окисления и охлаждать вольфрамовый электрод и сопло;

- получение стабилизированной плазменной струи с необхо­димыми температурой и скоростью;

- наилучшую теплопередачу к изделию;

- транспортировку материала при напылении.

Иногда газы разделяют на плазмообразующие и защитные (транспортирующие). При раз­дельной подаче плазмообразую­щий газ подается в зону катода, а защитные, или транспортирую­щие, газы - в зону столба дуги или факела плазмы.

О 4 8 12 16 20 24 28 32

по-3, к

Газ может поступать в горел­ку как вдоль оси катода, так и по касательной (вихревая стабили­зация). Для защиты катода и со-

Рис. 2.61. Теплопроводность во - пла от Разрушения и перегре - дорода, гелия, аргона и азота в ва наилучшим газом считается зависимости от температуры аргон, так как он химически

инертен и имеет малую тепло-

проводность (рис. 2.61). Однако аргон малоэффективен для преоб­разования электрической энергии в тепловую.

Во-первых, напряженность поля столба дуги в аргоне меньше,

чем в водороде, азоте: Едг ~ 0,8 В/мм; Ещ = 10,0 В/мм; ^N2 ~

= 2,0 В/мм (при I = 10 А). Следовательно, при одинаковом токе в аргоновой дуге выделяется на 1 мм ее длины меньше энергии IE, чем в дугах с другими защитными газами.

Во-вторых, энтальпия (объемное теплосодержание) аргоновой плазмы при температуре этой плазмы также значительно меньше (рис. 2.62), чем энтальпия плазмы азота или водорода (для Аг, N2, Н2 - соответственно 3, 16, 12 кВт/м3 при Т = 10 000 К). Однако температура плазмы существенно зависит от свойств плазмообра­зующего газа: для Аг и Не она составляет 15000...25000 К, что в

3- 4 раза выше, чем для N2 и Н2 (5000...7000 К). Подходящим газом для стабилизации дуги может быть азот (или воздух, содер­жащий до 78 % азота), так как его энтальпия при Т = 10000 К в 5 раз больше энтальпии аргона и, кроме того, азот значительно дешевле. Однако в воздухе и азоте вольфрамовый катод интен­сивно разрушается. В этом случае применяют катоды на основе циркония или гафния (термохимические катоды).

Гелий и водород (см. рис. 2.61) при Т = 10 000 К обладают большой теплопроводностью (которая всего в 2 раза меньше, чем у меди) и лучше других газов преобразуют энергию дуги в теплоту.

Ё

0)

Температура Г* 10~3, К Рис. 2.62. Зависимость энтальпии различных газов от температуры при диссоциации и ионизации

5

Рис. 2.63. Вольт-амперные харак­теристики плазменной дуги в раз­личных газах

В случае применения их в чистом виде происходит быстрый нагрев и разрушение сопла, поэтому указанные газы применяют в смеси с аргоном. Например, добавки к аргону водорода в пропорции по объему 2:1 позволяют повысить тепловую мощность струи почти в 2 раза по сравнению со смесью аргон - азот в той же пропорции. Напряжение плазменной водородной дуги составляет 100... 120 В, что в 2-3 раза выше, чем у ду­ги в аргоне (рис. 2.63). В

Имеется различие в про­цессах образования плазмы двух - и одноатомного газов.

Ионизация двухатомного газа происходит после диссоциа­ции его молекул, например, водород диссоциирует на 90 % при 4700 К, а азот - при 9000 К (см. рис. 2.62). Их эн­тальпии при указанных тем­пературах примерно соответ­ствуют энтальпии аргона при 14 000 К и энтальпии гелия - при 20 000 К. Таким образом,

крутой подъем кривой АН = f(T) в области диссоциации указы­вает на содержание большого количества теплоты в плазме при сравнительно низких температурах.

Следует отметить, что часто проводимое в литературе срав­нение удельного массового теплосодержания (энтальпии) плазмы разного состава не позволяет делать количественных выводов. Сравнение нужно проводить по мольному или объемному тепло­содержанию, так как расход плазмообразующих газов измеряется, как правило, в единицах объема. Следует также учитывать измене­ние молекулярной массы при диссоциации двухатомных газов и ионизации.

При охлаждении, когда газ вновь проходит через область тем­ператур диссоциации, большое количество теплоты может выде­литься на изделии и повысить эффективность процесса теплооб­мена. Следовательно, теплообмен газа зависит от его температуры и энтальпии; с увеличением температуры достигается некоторое состояние «насыщения», при котором скорость возрастания теп­лообмена значительно уменьшается. Это объясняется тем, что с ростом температуры в энтальпии молекулярного газа наряду с энергией поступательного движения все большее значение приоб­ретает энергия колебательного и вращательного движения моле­кул, которая легко расходуется на излучение.

Конвективный теплообмен, наиболее существенный при плаз­менной обработке материалов, определяется в основном энергией поступательного движения молекул и атомов газа, поэтому высо­котемпературные формы энтальпии здесь менее эффективны. Из рис. 2.63 следует, что водородная плазма - наилучший преобразо­ватель энергии дуги в теплоту.

ТЕОРИЯ сварочных процессов

Граничные условия

Чтобы решить дифференциальное уравнение теплопроводно­сти, необходимо задать распределение температур в начальный момент времени (начальное условие) и условия взаимодействия тела с окружающей средой на его границах (граничные условия). Начальное условие определяется …

Основные допущения и упрощения, принятые в классической теории распространения теплоты при сварке

На современном уровне развития математики аналитическое решение уравнения теплопроводности в общем виде (5.21) еще не найдено, однако при введении некоторых допущений и упрощений можно получить пригодные для практического использования ча­стные …

Дифференциальное уравнение теплопроводности

Сложный процесс изменения температуры точек тела с коор­динатами jc, у, z во времени t описывается дифференциальным уравнением теплопроводности. Для вывода этого уравнения необ­ходимо рассмотреть баланс теплоты в некотором элементарном объеме …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.