Уравнение движения и режимы работы Эл. привода как динамической системы
Механическая часть эл. привода представляет собой систему твердых тел, движущихся с различными скоростями. Уравнение движения ее можно определить на основе анализа запасов энергии в системе двигатель – рабочая машина, или на основе анализа второго закона Ньютона. Но наиблее общей формой записи диф. уравнений, определяющих движение системы, в которой число независимых переменных равно числу степеней свободы системы, является уравнение Лагранжа:
1) , где
Wk – запас кинетической энергии; – обобщенная скорость; qi – обобщенная координата; Qi – обобщенная сила, определенная суммой элементарных работ DAi всех действующих сил на возможных перемещениях Dqi:
При наличии в системе потенциальных сил формула Лагранжа принимает вид:
2) , где
L=Wk-Wn функция Лагранжа, равная разности запасов кинетической Wk и потенциальной энергии Wn.
В качестве обобщенных координат, т. е. не зависимых переменных, могут быть приняты как различные угловые, так и линейные перемещения в системе. В трехмассовой упругой системе за обобщение координаты целесообразно принять угловое перемещение масс j1,j2,j3 и соответствующие им угловые скорости w1, w2, w3.
Запас кинетической энергии в системе:
Запас потенциальной энергии деформации упругих элементов, подвергающихся скручиванию:
Здесь М12 и М23 – моменты упругого взаимодействия между инерционными массами J1 и J2, J2 и J3, зависящие от величины деформации j1-j2 и j2-j3.
На инерционную массу J1 действуют моменты М и Мс1. Элементарная работа приложенных к J1 моментов на возможном перемещении Dj1.
Следовательно, обобщенная сила .
Аналогично элементарная работа всех приложений ко 2-й и 3-й массам моментам на возможных перемещениях Dj2 и Dj3: , откуда
, откуда
Т. к. ко 2-й и 3-й массам электромагнитный момент двигателя не приложен. Функция Лагранжа L=Wk-Wn.
Учитывая значения Q1`,Q2`и Q3` и подставив их в уравнение Лагранжа, получим уравнения движения трехмассовой упругой системы
Здесь 1-е уравнение определяет движение инерционной массы J1, 2-е и 3-е движение инерционных масс J2 и J3.
В случае двухмассовой системы Мс3=0; J3=0 уравнения движения имеют вид:
В случае жесткого приведенного механического звена ;
Уравнение движения имеет вид
Это уравнение является основным уравнением движения эл. привода.
В системе эл. привода некоторых механизмов содержится кривошипно – шатунные, кулисные, карданные передачи. Для таких механизмов радиус приведения “r” непостоянен, зависит от положения механизма, так для кривошипно шатунного механизма, изображенного на рис.
Получить уравнение движения в этом случае можно также на основе формулы Лагранжа или на основе составления энергетического баланса системы двигатель – рабочая машина. Воспользуемся последним условием.
Пусть J –суммарный приведенный к валу двигателя момент инерции всех жестко и линейно связанных вращающихся элементов, а m – суммарная масса элементов жестко и линейно связанных с рабочим органом механизма, движущаяся со скоростью V. Связь между w и V нелинейна, причем . Запас кинетической энергии в системе:
Т. к. , и .
Здесь - суммарный приведенный к валу двигателя момент инерции системы.
Динамическая мощность:
Динамический момент:
, или т. к. , то
.
Полученные уравнения движения позволяют анализировать возможные режимы движения эл. привода как динамической системы.
Возможны 2 режима (движения) электропривода: установившийся и переходный, причем установившийся режим может быть статическим или динамическим.
Установившийся статический режим эл. привода с жесткими связями имеет место в случае, когда , , . Для механизмов, у которых Мс зависит от угла поворота (например, кривошипно-шатунных), даже при и статический режим отсутствует, а имеет место установившийся динамический режим.
Во всех остальных случаях, т. е. при и имеет место переходный режим.
Переходным процессом эл. привода как динамической системы называют режим его работы при переходе от одного установившегося состояния к другому, когда изменяется ток, момент и скорость двигателя.
Переходные процессы всегда связаны с изменением скорости движения масс электропривода, поэтому всегда являются динамическими процессами.
Без переходного режима не совершается работа ни одного эл. привода. Эл. привод работает в переходных режимах при пуске, торможении, изменении скорости, реверсе, свободном выбеге (отключение от сети и движении по инерции).
Причинами возникновения переходных режимов являются или воздействия на двигатель с целью управления им изменением подводимого напряжения или его частоты, изменением сопротивления в цепях двигателя, изменение нагрузки на валу, изменение момента инерции.
Переходные режимы (процессы) возникают также в результате аварии или др. случайных причин, например, при изменении величины напряжения или его частоты, обрыве фаз, возникновении не симметрии питающего напряжения и т. п. Внешняя причина (возмущающее воздействие) является только внешним толчком, побуждающим эл. привод к переходным процессам.
Передаточные функции, структурные схемы и частотные характеристики механической части электропривода как объекта управления.
Сначала рассмотрим механическую часть как абсолютно жесткую механическую систему. Уравнение движения такой системы:
Передаточная функция
Структурная схема механической части в этом случае, как следует из уравнения движения, имеет вид, изображенный на рис.
Изобразим ЛАЧХ и ЛФЧХ этой системы. Т. к. звено с передаточной функцией является интегрирующим, то наклон ЛАЧХ – 20 дб/дек. При приложении нагрузки Mc=const скорость в такой системе нарастает по линейному закону и если М=Мс не ограничить, то она возрастает до ¥. Сдвиг между колебаниями М и w, т. е. между выходной и входной величиной постоянен и равен .
Расчетная схема двухмассовой упругой механической системы, как было показано ранее, имеет вид, изображенный на рис.
Структурная схема этой системы может быть получена на основе уравнений движения ; ;
Передаточные функции
.
Структурная схема, соответствующая этим управлениям, имеет вид:
Для исследования свойств этой системы как объекта управления принимаем МС1=МС2=0 и выполним синтез по управляющему воздействию. Используя правила эквивалентного преобразования структурных схем, можно получить передаточную функцию ,связывающую выходную координату w2 , с входной, которой является w1 и передаточную функцию при выходной координате w1.
;
Характеристическое уравнение системы: .
Корни уравнения: .
Здесь W12 – резонансная частота свободных колебаний системы.
Наличие мнимых корней свидетельствует о том, что система находится на грани устойчивости и если ее толкнуть, то она затухать не будет и на частоте W12 возникает резонансный пик.
Обозначив ; , где
W02 – резонансная частота 2-й инерционной массы при J1 ®¥.
С учетом этого передаточные функции , и будут иметь вид:
;
Эти соотношения позволяют представить механическую часть эл. привода, как объекта управления в виде 3-х звеньев (см. рис.).
Из этой схемы следует, что передаточная функция системы по управляющему воздействию при выходной переменной w2, т. е. Ww2(r) равна: .
Ей соответствует структурная схема:
Для анализа поведения системы построим ЛАХЧ и ЛФЧХ механической части как объекта управления, сначала при выходной координате w2, заменив в выражении Ww2(r) R на jW. Они изображены на рис.
Из него следует, что в системе возникают механические колебания, причем число колебаний доходят до 10-30. При этом колебательность инерционной массы J2 выше, чем Массы J1. При W>W12 наклон высокочастотной асимптоты L(w2) равен – 60 дб./дек. И нет факторов, которые ослабляли бы развитие резонансных явлений при любом . Следовательно, когда важно получить требуемое качество движения инерционной массы J2, а также при регулировании координат системы, пренебрегать влиянием упругости механических связей без предварительной проверки нельзя.
В реальных системах имеется естественное демпфирование колебаний, которое, правда существенно не сказывается на форме ЛАХЧ и ЛФЧХ, однако ограничивает резонансный пик конечным значением, как показано пунктиром на рис.
Для анализа поведения системы при выходной координате w1 также построим ЛАХЧ и ЛФХЧ механической части как объекта управления. Структурная схема, вытекающая из передаточной
функции имеет вид:
Частотные характеристики приведены ниже:
Движение инерционной массы J1, как следует из характеристики и структурной схемы, при небольших частотах колебаний упругого взаимодействия определяется суммарным моментом инерции , причем механическая часть ведет себя как интегрирующее звено, т. к. характеристика L(w1) асимптотически приближается к асимптоте, имеющий наклон – 20 дб/дек. При M=const скорость w1 изменяется по линейному закону, на который накладываются колебания, обусловленные упругой связью. При приближении частоты колебаний момента М к W12 амплитуда колебаний скорости w1 возрастает и при W=W12 стремиться к бесконечности. Отсюда следует, что чем ближе к 1, т. е. при J2<<J1, тем меньше сказывается влияние упругости на механическую часть системы. Поскольку обычно g=1,2¸1,6, влиянием упругости можно пренебречь и передаточную функцию можно считать как функцию интегрирующего звена (в структурной схеме во втором звене числитель и знаменатель выражения сократятся) и механическую часть эл. привода можно рассматривать как абсолютно жесткое механическое звено.
При g>>1, т. е. J2>J1 и если частота среза , механическую часть эл. привода также можно считать абсолютно жесткой (С12=бесконечности).
Как уже сказано выше, обычно g=1,2¸1,6, но вообще то g=1,2¸100. Величина 100 характерна для редукторных тихоходных электроприводов, например, для механизма поворота стрелы шагающего экскаватора с емкостью ковша 100м3 и длиной стрелы 100м.