СВАРОЧНЫЕ ПРОЦЕССЫ В ЭЛЕКТРОННОМ МАШИНОСТРОЕНИИ

Образование соединений при пайке

Пайка - технологический процесс создания (получения) неразъемного соединения материалов в твердом состоянии с помощью припоев, которые при расплавлении смачивают паяемые поверхности, заполняют капиллярный зазор между ними и образуют паяный шов при кристаллизации. Припои - это металлы и сплавы, имеющие более низкую температуру плавления, вводимые между соединяемыми основными материалами.

На рис. 120 показана конструкция паяного соединения.

Образование соединений при пайке

Рис. 120. Конструкция паяного соединения:

1, 4 - соединяемые основные материалы, 2 - паяный шов, 3 - галтель (плавный переход припоя, вышедшего за пределы соединяемых кромок);

«а» - величина нахлестки паяного шва

Процесс образования паяного соединения состоит из следующих стадий: нагрев соединяемых деталей до температуры плавления припоя (рис. 121, а); плавление припоя (рис. 121, б); смачивание, растекание и заполнение капиллярного зазора жидким припоем (рис. 121, в); растворение основного металла в жидком припое и взаимная диффузия компонентов основного металла и припоя (рис. 121, г); охлаждение и кристаллизация паяного шва (рис. 121, д).

Практически все перечисленные стадии процесса пайки перекрываются, и окончание одной стадии трудно отделить от начала другой. Кроме того, эти стадии сопровождаются рядом других процессов (восстановление или разрушение пленки окислов, поглощение и выделение газов соединяемыми материалами и припоем, отжиг и рекристаллизация материала соединяемых деталей, химическое взаимодействие материалов с окружающей средой, возникновение или снятие внутренних напряжений в деталях и т. д.).

Образование соединений при пайке

Рис. 121. Основные стадии образования паяного соединения (стрелками показано направление потоков теплоты)

Если каким-либо образом на поверхность холодного материала нанести расплавленный припой, то он быстро затвердеет и никакой связи его с соединяемым материалом не произойдет. Поэтому зона пайки или паяемое изделие целиком должны быть прогреты до температуры несколько выше температуры плавления припоя.

Расплавленный припой должен растечься по поверхностям соединяемых кромок, а это возможно лишь при хорошей смачиваемости их поверхности припоем.

Капля жидкого металла, попадая на поверхность нагретого твердого тела, может растекаться слоем жидкости (рис. 122, а), может сплющиваться, сохраняя форму капли (рис. 122,б), может занимать промежуточное положение, частично растекаясь на поверхности (рис. 122, в).

Смачиваемостью называется первая стадия физико-химического

взаимодействия жидкости с поверхностью твердого тела, результатом которого является растекание жидкости тонким слоем. Физическая сущность процесса смачивания состоит в том, что поверхность контакта твердого тела с атмосферой замещается поверхностью контакта с жидкостью.

Газ

Образование соединений при пайке

Рис. 122. Положение капли жидкости на поверхности твердого тела: а - полное смачивание, б - несмачивание, в - ограниченное смачивание

Количественным критерием смачиваемости является краевой угол смачивания (см. рис. 122), который определяется как

cos0 — (^тг — ^тж) / ^ЖГ

где Отг - поверхностное натяжение твердого тела на границе с газовой средой; Отж - поверхностное натяжение жидкости на границе с твердым телом; Ожг - поверхностное натяжение жидкости на границе с газовой средой.

Различают следующие степени смачивания:

при cos0 = 1, 0 = 0 - полное смачивание поверхности твердого тела; при 1 > cos0> 0, 0° < 0 < 90° - ограниченное смачивание (обычно

0< 30-40°);

при 1 < cos0 < 0, 180° > 0 > 90° - несмачивание (капля собирается в шарик).

На степень смачивания оказывают влияние: характер взаимодействия в контакте соединяемого материала с припоем; наличие флюса и состав окружающей газовой среды (водород, инертные газы, вакуум и т. д.); состояние паяемых поверхностей (вид предварительной обработки, отсутствие окисных пленок, жировых загрязнений и т. д.); режим пайки.

Наличие окисной пленки на поверхностях соединяемых материалов и расплавленного припоя (за исключением спаев стекла с металлом) препятствует смачиванию. Для удаления пленки окислов в процессе пайки применяют флюсы, контролируемые газовые среды, вакуум и другие средства. Наиболее широко из этих средств используются флюсы, известные еще в древности.

Перед пайкой или в процессе пайки на соединяемые поверхности деталей и припой наносят флюс в виде водных, спиртовых или глицериновых растворов, паст, в порошкообразном виде. В определенном интервале температур флюс проявляет свое действие. Он обволакивает расплавленный припой и нагретые кромки деталей тонким слоем (рис. 123). При этом поверхности контакта твердого тела и расплавленного припоя с атмосферой замещаются поверхностью контакта с жидким флюсом. Флюс, взаимодействуя с окисной пленкой, обеспечивает протекание физико-химических процессов между припоем и соединяемыми материалами, начальной стадией которых является смачивание. В процессе воздействия флюса происходят также вытеснение флюса растекающимся припоем и защита места пайки от окисления.

W/r/sc ЖиЗт/

Образование соединений при пайке

Рис. 123. Положение капли жидкого припоя на поверхности нагретого твердого тела при наличии флюса (пунктиром показано положение капли при отсутствии флюса)

Кроме флюсов для удаления окисных пленок с поверхности соединяемых кромок используется нагрев деталей в контролируемой атмосфере или в вакууме.

При этом происходят следующие процессы: диссоциация или возгонка окислов при нагреве в вакууме; их восстановление при нагреве в активных газовых средах (например, в среде водорода); растворение окислов в материале соединяемых кромок при нагреве деталей в бескислородной атмосфере; их восстановление компонентами основного металла или расплавленного припоя.

Для получения качественного паяного соединения необходимо, чтобы припой хорошо растекался по поверхностям соединяемых материалов.

Под растекаемостью понимают свойство жидких металлов или сплавов (припоев) распространяться по поверхности или в зазоре соединяемых материалов, находящихся в твердом состоянии.

В условиях пайки на процесс растекания помимо смачиваемости оказывают влияние: жидкотекучесть, вязкость, поверхностное натяжение жидкости, шероховатость поверхности твердых металлов и другие факторы.

Количественно растекаемость припоев по поверхности металлов можно оценить коэффициентом Кр, равным отношению площади S0 припоя до пайки к площади S, занятой припоем после пайки (Кр = So/S,). Чем меньше значение Кр, тем лучше растекается припой по заданному металлу. Определение растекаемости припоев производится следующим образом: на середину диска из того или иного металла укладывается таблетка припоя диаметром 8 мм и толщиной 0,3 мм, которая в строго горизонтальном положении нагревается до расплавления, а затем охлаждается.

Нагрев производится со скоростью, близкой к скорости нагрева в реальных условиях пайки. Температура нагрева и время выдержки устанавливаются также аналогичными тем, которые наблюдаются при пайке. На охлажденном образце замеряется площадь, занятая припоем после пайки (рис. 124), и по указанной ранее формуле определяется значение Кр.

Для образования спая между основным металлом и припоем в отдельных случаях достаточно смачивания основного металла расплавом припоя.

Образование соединений при пайке

Рис. 124. Определение растекания припоя по поверхности паяемого металла:

1 - таблетка припоя до нагрева; 2 - растекшаяся капля припоя после нагрева; 3 - диск

Однако высокие скорости взаимодействия на границе между твердой и жидкой фазами, а также сравнительно их длительное взаимодействие, обусловленное технологией пайки, не позволяют в обычных условиях завершить процесс взаимодействия на стадии смачивания и растекания припоя. Уже в момент заполнения капиллярного зазора происходит интенсивное растворение основного металла в расплаве припоя и диффузия его в жидкости. Процесс растворения представляет собой разрушение кристаллической решетки твердого металла и переход его в жидкий металл. Внешним проявлением растворения основного металла в припое является смещение границы контакта твердой и жидкой фаз в сторону соединяемого материала (см. рис. 121, г).

Интенсивность растворения основного металла в расплаве припоя увеличивается с повышением температуры и длительности контакта твердой и жидкой фаз. Способность расплавленных припоев интенсивно растворять основной металл является отрицательным свойством, так как ухудшает смачивание и растекание припоя, вызывая хрупкость в соединении и появление эрозии основного материала.

Помимо растворения в системе «расплавленный припой-основной материал» протекают процессы диффузии. Диффузией в общем случае называют проникновение атомов одного вещества в другое.

Диффузия при пайке играет большую роль в процессе формирования паяного соединения. Смачивание, капиллярное течение, образование переходного слоя между основным металлом и металлом шва, выравнивание состава шва связаны с диффузией. В условиях пайки протекает диффузия компонента припоя в сторону основного металла и компонентов основного металла в сторону припоя. Диффузия атомов может проходить по поверхности (поверхностная диффузия), по границам зерен (граничная диффузия) и в объеме зерен (объемная диффузия). Схема диффузии по поверхности, по границам зерен и в объеме зерен представлена на рис. 125. Преобладающая роль диффузии по поверхности и границам зерен отрицательно сказывается на прочности паяных соединений.

Образование соединений при пайке

материал

Рис. 125. Схема диффузионных потоков при взаимодействии припоя с основным металлом:

1 - поверхностная диффузия, 2 - диффузия основного металла в припой, 3 - диффузия припоя в объеме зерна, 4 - диффузия по границам зерен

Интенсивность протекания процесса диффузии при пайке зависит от многих факторов: от состояния соединяемых материалов (в материалах, свободных от внутренних напряжений, диффузия протекает значительно медленнее); от размера зерна основного металла (чем мельче зерно, тем быстрее протекает диффузия); от температуры пайки; от времени выдержки при температуре пайки и т. д.

Заключительной стадией образования паяного соединения является кристаллизация, которая фиксирует процессы взаимодействия между основным металлом и расплавом припоя на том или ином уровне их развития. При кристаллизации происходит затвердевание тонкой прослойки расплавленного припоя, находящегося в зазоре, образованного поверхностями соединяемых деталей.

При температуре пайки в результате взаимодействия основного металла и расплавленного припоя в шве образуется сплав, отличающийся по составу и свойствам и от основного металла, и от припоя. Обычно он кристаллизуется в виде отдельных зон. При этом ближе к основному металлу образуются зоны, обогащенные компонентами основного металла, ближе к центру шва - компонентами припоя. Кристаллизация металла шва начинается в первую очередь на поверхности основного металла, кристаллиты которого являются как бы основой для роста кристаллитов припоя. Помимо этого центры кристаллизации могут возникать и в жидком металле шва.

В процессе кристаллизации в паяном шве могут фиксироваться:

- твердые растворы, в которых соотношения между компонентами могут изменяться без нарушения однородности сплава;

- эвтектические структуры - механическая смесь твердых растворов компонентов, образующихся при затвердевании жидкого раствора и имеющих наиболее низкую температуру плавления по сравнению со смесями тех же веществ, взятых в других соотношениях;

- интерметаллические соединения - химические соединения в металлических сплавах.

Твердые растворы образуют металлы, имеющие общий тип кристаллической решетки и очень близкие значения межатомных расстояний. Твердые растворы являются желательными структурами, так как при этом обеспечивается высокая прочность и пластичность паяного соединения.

Эвтектические структуры в паяных швах возникают при пайке припоями эвтектического состава или образуются в результате взаимодействия припоя с паяемым металлом. Эвтектические структуры возникают, если сходство металлов недостаточно для образования твердого раствора, а разница в свойствах и строении невелика, чтобы образовать интерметаллические соединения. Припои эвтектического свойства обладают высокой жидкотекучестью, и пайка с применением их протекает наиболее легко, однако прочность паяных швов при этом ниже, чем в случае образования твердых растворов.

Интерметаллические соединения образуют металлы преимущественно в том случае, если в параметрах их кристаллических решеток и в химических свойствах имеется большая разница. Интерметаллические соединения могут располагаться в виде одного или нескольких слоев по границе «основной металл-припой» или быть распределены в шве в виде включений. Качество паяного шва при образовании интерметаллических соединений между взаимодействующими металлами, как правило, будет ниже, так как эти соединения обычно имеют высокую хрупкость.

В результате протекания всех стадий процесса пайки между соединяемыми деталями возникает паяное соединение, схема строения которого представлена на рис. 126.

Образование соединений при пайке

Рис. 126. Схема строения паяного соединения после кристаллизации (пунктиром показано первоначальное положение соединяемых кромок)

Исходя из представленной схемы, можно дать определения основным элементам соединения.

Паяное соединение (элемент соединяемых деталей) включает в себя паяный шов и прилегающие к нему участки основного металла.

Паяный шов - элемент паяного соединения, образовавшийся в результате кристаллизации жидкой фазы.

Диффузионная зона - граничащий с паяным швом слой основного металла, образовавшийся в результате диффузии компонентов припоя в основной металл.

Рассмотренный тип образующегося спая носит название растворно­диффузионный спай. Характер диффузии и растворение в зоне спая зависят от типа соединяемых материалов и припоя, от температуры и времени их взаимодействия, поэтому в классификации спаев различают четыре основных типа:

1. Растворно-диффузионный спай - наиболее широко встречается в практике (структура и схема его образования подробно изложены ранее).

2. Бездиффузионный спай - образуется при использовании припоев с низкой температурой плавления, если температура нагрева под пайку близка к температуре плавления припоя, а время пайки ограничено временем, необходимым на смачивание и растекание. В этом случае ни заметного растворения основного металла в припое, ни диффузии припоя в основной металл практически не происходит. Соединение определяется прочностью сцепления припоя с поверхностью основного металла, а отсутствие диффузии практически не нарушает структуру паяемого элемента. Такой вид спая целесообразен при пайке полупроводниковых кристаллов на подложку мягкими припоями.

3. Контактно-реакционный спай - образуется в стыке двух материалов без припоя, если они способны образовать сплав с более низкой температурой плавления, чем температура плавления каждого из них. Например, кремний, имеющий температуру плавления 1423 °С, и золото с температурой плавления 1063 °С образуют эвтектический сплав, содержащий примерно 94 % золота с температурой плавления 370 °С. Поэтому, если кристалл кремния нагреть в контакте с золотой пленкой, то за счет взаимной диффузии образуется жидкая прослойка, которая выполнит роль припоя. Этот вид спая используют при посадке кристаллов полупроводниковых приборов в золоченые корпуса при температуре паяния 400 °С и времени образования спая ~ 1 с.

4. Диспергированный спай - образуется при пайке металлов с высокой температурой плавления. В этом случае наблюдается диффузия припоя в основной металл с образованием диффузионной зоны, но вместо растворения основного металла в припое происходит его размывание с отрывом мелкодисперсных частиц, которые остаются в припое во взвешенном твердом состоянии и после образования спая.

СВАРОЧНЫЕ ПРОЦЕССЫ В ЭЛЕКТРОННОМ МАШИНОСТРОЕНИИ

Оценка качества соединений методами разрушающего контроля

Механические испытания сварных и паяных соединений. Механические испытания соединений - эффективные методы контроля и оценки качества сварных и паяных соединений при обработке технологии сборки изделий. Основные методы определения механических свойств …

Оценка качества соединений и приборов методами неразрушающего контроля

Контроль внешним осмотром. Одним из основных средств отбраковки потенциально ненадежных изделий является контроль соединений внешним осмотром. Такой контроль позволяет, например, выявлять следующие дефекты, возникающие при сборке микросхем: отслоение металлизации контактных …

Общие сведения о контроле качества изделий электронного машиностроения

Высокие требования, предъявляемые к электронным приборам, предопределяют использование разнообразных и надежных методов контроля качества сварных и паяных соединений. Большинство известных методов оценки качества сварных и паяных соединений используют при контроле …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.