Строительные машины и основы автоматизации
МАШИНЫ ДЛЯ ПОДГОТОВИТЕЛЬНЫХ РАБОТ
Для выполнения подготовительных работ применяют кусторезы, корчеватели-собиратели и рыхлители, оборудование для понижения уровня грунтовых вод и открытого водоотлива.
Кусторезы предназначены для расчистки заросших кустарником и мелколесьем площадей под застройку и представляют собой навесное оборудование с гидравлическим управлением на гусеничные тракторы тягового класса 10. Основным рабочим органом кустореза (рис. 4.3, а) служит клинообразный отвал 2, снабженный в нижней части сменными гладкими или пилообразными ножами 6. Впереди отвала, имеющего в плане вид треугольника, установлен носовой лист 1 для раскалывания пней и раздвигания сваленных деревьев. Отвал смонтирован на универсальной подковообразной толкающей раме 5, шарнирно прикрепленной к ходовым тележкам трактора, и соединяется с ней сферической головкой. На раму могут быть навешены также сменные рабочие органы корчевателя и поворотного бульдозера. Подъем и опускание рамы с рабочим органом осуществляется двумя гидроцилиндрами 4, работающими от гидросистемы трактора. При движении кустореза вперед опущенный в рабочее положение отвал с ножами скользит по поверхности земли и срезает кустарники и мелкие деревья, образуя за собой проход, равный ширине захвата отвала (до 3,6 м). Защитное ограждение 3 в виде стального каркаса предохраняет трактор от повреждений при падении срезаемых деревьев. Для периодической заточки ножей отвала используют переносную шлифовальную головку с приводом от трансмиссии трактора через гибкий длинный вал. Производительность кусторезов с пассивным рабочим органом 11000...14000 м2/ч при средней скорости движения машин 3...4 км/ч.
Корчеватели-собиратели применяют для извлечения (корчевания) из грунта камней массой до 3 т, пней диаметром до 0,45 м, корневых систем, сплошной корчевки кустарника и мелколесья, транспортирования на близкое расстояние толканием пней, камней, кустарника и поваленных деревьев, а также погрузки камней и крупных пней в транспортные средства. На рис. 4.3, б показан корчеватель-собиратель на базе гусеничного трактора класса 10 с передним и задним расположением навесных рабочих органов. Передний корчеватель имеет износостойкие сменные зубья 12, смонтированные на толкающей раме 13. Поворот зубьев относительно рамы в вертикальной плоскости и подъем-опускание рамы с зубьями осуществляются соответственно гидроцилиндрами 10 и 11. Процесс корчевания крупных камней, пней и корней деревьев производится путем заглубления под них зубьев корчевателя и одновременном поступательном движении машины вперед. Задний корчеватель 7 смонтиро-
Рис. 4.3. Машины для подготовительных работ: а — кусторез; 6 — корчеватель-собиратель; в — рыхлитель
ван на балке 8 подвески и меняет свое положение в вертикальной плоскости с помощью гидроцилиндров 9 и 14. Гидроцилиндры переднего и заднего корчевателей работают от гидросистемы трактора. Корчеватели-собиратели навешивают на гусеничные тракторы класса 3...35 мощностью 50...390 кВт. Часовая производительность при корчевании пней составляет до 45...55 шт., при уборке камней — до 15...20 м3, при сгребании срезанных деревьев, выкорчеванных пней и кустарника — до 2500...4000 м2.
Рыхлители оснащаются одно - и трехзубым навесным рыхли - тельным оборудованием заднего расположения с гидравлическим управлением. Рыхлительное оборудование навешивают на гусеничные бульдозеры с тягачами класса 10, 25. 35, 50 и 75 мощностью
118.. .636 кВт.
Главным параметром бульдозеров-рыхлителей является тяговый класс базового трактора. Индекс рыхлительного оборудования бульдозеров-рыхлителей включает две первые буквы ДП, за которыми следуют цифры порядкового номера модели и буквы, обозначающие очередную модернизацию (А; Б, В, ...) и северное (С, XJI) исполнение оборудования. Так, бульдозер-рыхлитель в северном исполнении на базе трактора Т-330 имеет индекс ДЗ-129АХЛ, а его рыхлительное оборудование в северном исполнении — ДП-29АХЛ. Крепление рыхлителей осуществляется к остову базового трактора или к корпусу его заднего моста.
Бульдозеры-рыхлители применяют для предварительного послойного рыхления и перемещения плотных каменистых, мерзлых и скальных грунтов при устройстве строительных площадок, рытье котлованов и широких траншей, а также для взламывания дорожных покрытий. Разрушение грунтов и пород происходит при поступательном движении машины и одновременном принудительном заглублении зубьев рабочего органа до заданной отметки. В процессе рыхления массив грунта разделяется на куски (глыбы) таких размеров, которые удобны для последующей их эффективной разработки, погрузки и транспортирования другими машинами.
Рыхление производят параллельными резами по двум технологическим схемам: без разворотов у края площадки с возвратом машины в исходное положение задним ходом (челночная схема) и с поворотом рыхлителя в конце каждого прохода (продольно-поворотная схема). Челночная схема наиболее рациональна при малых объемах работ в стесненных условиях, продольно-поворотная — на участках большой протяженности. Максимальные величины глубины и ширины захвата рыхления, рабочих скоростей движения и число зубьев рыхлителя определяются тяговым классом базовой машины.
Наименьшая глубина рыхления за один проход должна на
20.. .30% превышать толщину стружки грунта, разрабатываемого землеройно-транспортными машинами, в комплексе с которыми работает рыхлитель. Рыхление высокопрочных грунтов осуществляется, как правило, одним зубом.
Рабочий орган рыхлителя состоит из несущей рамы, зубьев, подвески и гидроцилиндров управления. Зубья имеют сменные наконечники, лобовая поверхность которых защищена износостойкими пластинами для защиты от абразивного износа. Для интенсификации процесса рыхления на зубья рыхлителей устанавливают ушири - тели, которые позволяют за один проход разрушать большие объемы материала и выталкивать каменные глыбы на поверхность. Уширители обеспечивают более устойчивое движение базового трактора и работу рыхлителя, практически сплошное разрушение материала между соседними бороздами, снижение общего количества проходов.
Зубья выполняют неповоротными, жестко закрепленными в карманах рамы и поворотными в плане (на угол 10... 15° в обе стороны) за счет их установки в специальных кронштейнах — флюгерах, прикрепляемых к раме шарнирно. Поворотные зубья способны обходить препятствия, встречающиеся в грунте. Подвеска рыхлителя к базовой машине — четырехзвенная (параллелограммная). Она обеспечивает постоянство угла рыхления зубьев независимо от величины их заглубления, что позволяет при оптимальных значениях этого угла осуществлять процесс рыхления с пониженными энергозатратами, повысить производительность рыхлителя и уменьшить износ наконечников зубьев.
Бульдозер-рыхлитель на базе трактора класса 10 (рис. 4.3, в) имеет четырехзвенную подвеску рыхлителя с неповоротным зубом. Подвеска составлена из опорной рамы, жестко прикрепленной к базовому трактору 2, тяги 18, рабочей балки 19 и нижней рамы 22.
Балка имеет сменный зуб 21 с наконечником 20. Опускание, принудительное заглубление и фиксирование рыхлителя в определенном рабочем положении, а также подъем его при переводе в транспортное положение производятся двумя гидроцилиндрами 17.
Разрыхленный грунт перемещается бульдозерным оборудованием 15 с неповоротным отвалом. Бульдозер-рыхлитель может быть оборудован бульдозерным оборудованием с поворотным отвалом и универсальной рамой для навески корчевателя и кустореза, а также комплектом сменных уширителей. Гидроцилидры рыхлителя и бульдозера 16 работают от гидросистемы базовой машины. Рыхлители имеют наибольшую ширину захвата (при трех зубьях)
1480.. .2140 мм и рыхлят грунты высокой прочности на глубину 0,4... 1,2 м. Производительность навесных рыхлителей на грунтах IV...V категорий 60...150 м-7ч, средняя рабочая скорость движения
2.5.. .5 км/ч.
Эксплуатационная производительность (м3/ч) навесного рыхлителя
Пэ = m0VkJTu, (4.3)
где V— объем грунта, разрыхленного за цикл, м3; кв — коэффициент использования машины по времени; Ти — продолжительность цикла, с.
где В — средняя ширина полосы рыхления, зависящая от числа, шага и толщины зубьев, угла развала (15...60°) и коэффициента перекрытия (0,75...0,8) резов, м; /гср— средняя глубина рыхления в данных грунтовых условиях, м; / — длина пути рыхления, м.
При челночной схеме работы рыхлителя
Тп - (IIvр) + (//vx) + tc + to, (4.5)
где vp и vx — скорости движения машины соответственно при рыхлении и холостом (обратном) ходе, м/с; tc — время на переключение передачи (tc ~ 5 с); to — время на опускание рыхлителя (to = 2...3 с).
При разработке участка продольными проходами с разворотами на концах к времени цикла добавляется? р — продолжительность разворотов трактора в конце участка, а время холостого хода исключается.
Оборудование для открытого водоотлива. Для откачки дождевых, талых и грунтовых вод из траншей, котлованов, колодцев, а также мелких водоемов на строительных площадках, трассах строительства коммуникаций открытым способом применяют открытый водоотлив, осуществляемый с помощью насосов и насосных установок. Открытый водоотлив эффективен при малых скоростях притока грунтовых вод, когда этот способ не снижает несущей способности грунта под сооружением и обеспечивает устойчивость откосов траншей и котлованов. При открытом водоотливе наиболее часто применяют диафрагмовые и самовсасывающие центробежные насосы, реже используют погружные насосы, опускаемые непосредственно в выемку с водой.
Диафрагмовый насос (рис. 4.4, а) состоит из корпуса 1 со всасывающим патрубком 7, крышки 4 с отводящим патрубком 3 и резиновой диафрагмы 6 с колпаком 5, которым от механического привода сообщаются возвратно-поступательные (колебательные) движения. При движении диафрагмы вверх в корпусе насоса, создается разрежение, за счет которого нагнетательный клапан 2 закрывается, а всасывающий 8 открывается, и происходит засасывание жидкости в полость корпуса насоса. При движении диафрагмы вниз вода вытесняется через открытый нагнетательный клапан 2 (клапан 8 закрыт) в отводящий патрубок 3, соединенный с отводящим шлангом. Насос с приводом монтируют на колесной тележке. В комплект насоса входит два резинотканевых шланга — всасывающий и отводящий. На свободном конце всасывающего шланга установлен сетчатый фильтр, предохраняющий насос от попадания в него посторонних частиц. Диафрагмовые насосы имеют сравнительно низкую подачу (до 30...45 м3/ч при высоте всасывания до 5 м) и применяются для выполнения небольших объемов водоотливных работ.
Р н с. 4.4. Насосы: а — диафрагмовый; 6 — центробежный самовсасывающий
Значительно большую подачу (до 250...500 м3/ч) при высоте всасывания до 4,5...6 м и полном манометрическом напоре до 0,12...0,2 МПа имеют самовсасывающие центробежные насосы. Характерной особенностью таких насосов является потребность в заливке их корпусов водой перед первым пуском в работу. Самовсасывающий центробежный насос (рис. 4.4, б) состоит из корпуса 14, рабочего колеса 17, всасывающего шланга 9 с фильтром 18, напорного шланга 13, заливной горловины 11 с быстродействующим запорным клапаном 12 и обратного клапана 10. Внутри корпуса насоса имеются два резервуара — всасывающий А и напорный Б, сообщающиеся между собой через спиральную камеру 16, в которой расположено рабочее колесо 17 с тремя лопастями специального профиля, закрепленное на приводном валу 15.
Перед первым пуском насоса в его корпус через горловину заливают воду, после чего включают привод насоса. С началом вращения рабочего колеса вода из всасывающего резервуара А нагнетается в напорный Б. В результате разрежения, создаваемого во всасывающем резервуаре, обратный клапан 10 открывается, и воздух из всасывающего шланга начинает поступать в корпус насоса. По мере создания необходимого вакуума во всасывающей магистрали (шланг 9 и резервуар А) последняя заполняется водой через фильтр 18, самовсасывание насоса прекращается, и он переходит на нормальный режим работы по откачиванию воды.
Центробежные насосы приводятся в действие от электромотора или двигателя внутреннего сгорания через редуктор. Для быстрой доставки к месту откачки насосы монтируют на прицепных колес
ных тележках, автомобилях, гусеничных и колесных тракторах. Привод насосов самоходных установок осуществляется от вала отбора мощности базовой машины.
Оборудование для понижения уровня грунтовых вод. Для искусственного понижения уровня грунтовых вод при рытье траншей и котлованов и закрытой прокладке коммуникаций в песчаных и супесчаных водонасыщенных грунтах применяют иглофильтровые установки с погружаемыми в грунт вакуумными или эжекторными иглофильтрами. Иглофильтровые установки откачивают воду из вертикальных скважин, закладываемых по контуру осушиваемой выемки или строящегося подземного сооружения и отстоящих друг от друга на расстоянии до 1,5...2 м. Глубина погружения иглофильтров должна быть ниже отметки заложения сооружения на 1...2 м. Одним из основных средств водопонижения на глубину до 4...5 м являются вакуумные легкие иглофильтровые установки (ЛИУ).
Водопонижение на большую глубину обеспечивается многоярусным расположением установок ЛИУ или установками с эжекторными иглофильтрами.
Установка ЛИУ (рис. 4.5, а) состоит из иглофильтров 1, всасывающего водосборного коллектора 3 и самовсасывающего или
центробежного насоса 4 с электроприводом 5 на колесном ходу 6. Установки ЛИУ выполнены по единой принципиальной схеме, комплектуются однотипными иглофильтрами и отличаются одна от другой количеством иглофильтров, типом всасывающего насоса и размерами водосборного коллектора. Последний составлен из звеньев стальных труб, соединяемых муфтами. На каждом звене коллектора имеются патрубки, к которым с помощью гибких шлангов 2 подсоединяются погруженные в грунт иглофильтры (рис. 4.5, 6).
Они служат для очистки и накопления во внутренней своей полости грунтовых вод и состоят из фильтрового звена с наконечником и глухой надфильтровой трубы, соединяемой с водосборным коллектором.
Р и с. 4.6. Схема эжекторного иглофильтра |
Фильтровое звено выполнено из перфорированной наружной 8 и сплошной внутренней 9 труб. На спиральную проволочную обмотку 12 наложены две сетки — латунная фильтрационная 11 и защитная бронзовая 10. Наружная труба соединяется с надфильтровой соединительной муфтой 7. Внутри наконечника 15 наружной трубы установлен шаровой клапан 14, плотно прилегающий к седлу 13 в торце внутренней трубы 9 за счет вакуума, создаваемого насосом при отсасывании воды из иглофильтра. Иглофильтры погружают в грунт гидравлическим способом (подмывом) или в предварительно пробуренные скважины. В первом случае клапан 14 (рис. 4.5, в) открывается под напором воды, подаваемой в фильтровое звено от насоса, и погружение иглофильтра происходит под собственной тяжестью при интенсивном размыве грунта впереди фильтрового звена. Размытый грунт поднимается по затрубному пространству на поверхность. Величина необходимого заглубления иглофильтра в грунт в зависимости от требуемого понижения уровня грунтовых вод обеспечивается применением надфильтровых труб длиной 3; 4 и 5 м. Общая длина иглофильтра достигает 8,5 м. Установки ЛИУ обеспечивают подачу 60... 140 м3/ч, высоту всасывания до 7 м при полном напоре 0,24...0,36 МПа. Мощность привода установок 5,5...20 кВт.
Для понижения уровня грунтовых вод до
15.. .20 м применяют установки с эжекторными иглофильтрами. Подъем откачиваемой воды в эжекторных иглофильтрах (рис. 4.6) осуществляется с помощью водоструйных насосов-эжекторов, принцип действия которых основан на непосредственной передаче энер
гии от одного движущегося потока жидкости другому. Принцип работы следующий. Рабочая вода 2 от центробежного насоса подается под напором по пространству, образованному между внутренней водоподъемной 5 и наружной 6 трубами иглофильтра к входному окну 9 эжектора, состоящего из камеры смешения 8 и диффузора 7 с насадкой диаметром 7... 18 мм. Выходя с большой скоростью из насадки в камеру смешения, вода создает в ней вакуум, под действием которого грунтовая вода 1 через фильтровое звено 10 (такое же, как у ЛИУ) подсасывается в камеру смешения п в смеси 4 с рабочей водой подается наверх по внутренней трубе иглофильтра в сливную трубу 3.
Подача установок 150...540 м3/ч, они комплектуются 10...36 иглофильтрами диаметром 63... 150 мм производительностью 0,9...9,4 л/с.