ПРИНЦИПЫ ЛАЗЕРОВ

АКТИВНАЯ СИНХРОНИЗАЦИЯ МОД

Существует три основных типа активной синхронизации мод, а именно:

■ синхронизация мод, которая осуществляется с помощью амплитудного модулятора (так называемая AM-синхронизация мод);

■ синхронизация мод, которая осуществляется с помощью фазового моду­лятора — ЧМ-синхронизация мод;

■ синхронизация мод, осуществляемая путем периодической модуляции усиления лазера с частотой повторения модулирующих импульсов, рав­ной основной частоте резонатора Av = c/2L (синхронизация мод при син­хронной накачке).

Здесь будет более подробно описана АМ-синхронизация мод, поскольку этот метод является наиболее часто встречающимся, тогда как ЧМ-синхро - низация будет рассмотрена более кратко. Синхронизация мод при синхрон­ной накачке в силу того, что она используется реже всего, здесь обсуждаться не будет. Действительно, данный метод находит применение только в актив­ных средах с временами релаксации, попадающими в наносекундный диапа­зон (особенно это касается активных сред на красителях), и для получения импульсов очень короткой длительности необходимо, чтобы частота повто­рения модулирующих импульсов накачки равнялась (с достаточно высокой точностью) основной частоте резонатора лазера. Поэтому на практике при использовании синхронизации мод и при синхронной накачке лазера на кра­сителе достаточно сложно реализовать световые импульсы с длительностью менее 1 пс.

Для описания механизма АМ-синхронизации мод предположим, что в резонатор помещен управляемый внешним сигналом модулятор, который создает изменяющиеся во времени потери на частоте сот. Если сот ^ Асо, где Асо = 2яАу, и где Av является межмодовым расстоянием, то эти потери приве­дут просто к амплитудной модуляции электрического поля Ei(t) каждой моды резонатора:

El(t) = E0[ 1 — (5/2)(1 - cos comЈ)]cos (coz t + ф*), (8.6.17)

Где со, и фг — частота и фаза моды, а 5 представляет собой глубину модуляции. Это означает, что поле модулируется от значения Е0 до Е0( 1 - 8). Следует отметить, что в выражение (8.6.17) входит член 2Ј0(S/2)cos сomt х cos ((ott + ф;),

В модуляторе

2ут Световой импульс /(£)

I

T,

Т

Рис. 8.20

АМ-синхронизации мод во времени:

А) условие стационарной генерации; б) све­товой импульс, приходящий до момента времени £т, соответствующего минималь­ным потерям; в) укорочение импульса, ко­гда он приходит в момент времени £т.

Представление процесса

2Ут’ I А

Потери в модуляторе

T,

Т

А

2у, Ik

АКТИВНАЯ СИНХРОНИЗАЦИЯ МОД

** 2Ут> Потери

 

АКТИВНАЯ СИНХРОНИЗАЦИЯ МОД

2y(t)

 

АКТИВНАЯ СИНХРОНИЗАЦИЯ МОД

T

 

В

 

АКТИВНАЯ СИНХРОНИЗАЦИЯ МОД
АКТИВНАЯ СИНХРОНИЗАЦИЯ МОД
АКТИВНАЯ СИНХРОНИЗАЦИЯ МОД

T

 

АКТИВНАЯ СИНХРОНИЗАЦИЯ МОД АКТИВНАЯ СИНХРОНИЗАЦИЯ МОД АКТИВНАЯ СИНХРОНИЗАЦИЯ МОД

Который можно записать в виде (E05/4){cos [(со* + com)f + ф*] + cos [(со* - соm)t + + ф*]}. Таким образом, поле£*(£) на самом деле содержит две компоненты, осциллирующие на частотах со* ± сот (боковые полосы модуляции). Если те­перь сот = Асо, то эти боковые полосы совпадут с частотами соседних мод резо­натора. Следовательно, члены, содержащие выражения для этих боковых полос, войдут в два уравнения для полей соседних мод резонатора. Поэтому уравнения мод резонатора становятся связанными, т. е. образуют систему в том смысле, что уравнение для поля одной моды резонатора будет содержать два члена, возникающих при модуляции двух соседних мод [16]. Можно по­казать, что при этом механизме синхронизации, если модулятор располо­жен очень близко к одному из зеркал, фазы мод будут синхронизированы в соответствии с выражением (8.6.1).

Принцип действия АМ-синхронизации мод, возможно, легче понять, если рассматривать ее во временном, а не в частотном представлении. На рис. 8.20а показана временная зависимость потерь 2у в резонаторе за полный проход,[40] которые модулируются с периодом Т = 2п/ыт. Будем считать, что модулятор расположен вблизи одного из зеркал резонатора (см. рис. 8.19а). Если теперь сот = Асо, то период модуляции Т будет равен времени полного прохода резо­натора, и в этом случае прохождение световых импульсов (функция I(t) на рис. 8.20а)) через модулятор в момент времени tm при минимальных поте­рях будет соответствовать условию стационарной генерации. Действитель­но, импульс, который проходит через модулятор в момент времени tm при минимальных потерях, будет снова возвращаться в модулятор через интер­вал времени 2L/c, когда потери вновь станут минимальными. С другой сто­роны, если предположить, что импульс изначально проходит через модуля­тор в момент времени, скажем, чуть раньше tm (показан сплошной кривой на
рис. 8.206), то благодаря изменяющимся во времени потерям модулятора передний фронт импульса будет испытывать меньшие потери, чем задний фронт. Следовательно, после прохождения через модулятор светового им­пульса, показанного штриховой линией на рис. 8.206, момент времени, в который наблюдается пик импульса, сдвигается таким образом, что при сле­дующем прохождении пик окажется ближе к Ьт. Это показывает, что случай на рис. 8.20а соответствует устойчивой синхронизации мод. Действительно, в этом случае за время изменения величины потерь 2ут(£) длительность им­пульса будет укорачиваться каждый раз после его прохождения через моду­лятор, поскольку и передний, и задний фронты импульса будут претерпевать некоторое ослабление, в отличие от области пика импульса, см. рис. 8.20в. Если рассматривать только этот механизм развития, то длительность им­пульса в конечном итоге должна устремиться к нулю при очень большом числе проходов через модулятор. Однако этому препятствует ограниченная ширина спектра усиливающей среды. Действительно, когда импульс укора­чивается, его спектр, в конечном итоге, уширяется до ширины линии гене­рации лазерной среды. Таким образом, крылья спектрального распределе­ния импульса больше не могут усиливаться, что накладывает основные огра­ничения на спектральную ширину импульса, а следовательно, и на его длительность.

В зависимости от того, однородно или неоднородно уширенной является лазерная линия, влияние ограниченности спектральной полосы активной сре­ды на длительность импульса в режиме стационарной генерации может быть различной. В случае неоднородно уширенной линии и при значительном пре­вышении накачки над порогом, ширина линии генерации Ауь стремится за­нять всю ширину линии усиления Ду£. Действительно, если описывать дан­ный процесс в представлении частотной области, то основной функцией моду­лятора является синхронизация этих уже генерирующих мод. При выполнении условия синхронизма сот = Асо, а также в случае, когда АМ-модулятор поме­щен на одном из концов резонатора, условие (8.6.1) синхронизации фаз ста­новится очевидным. Теперь, предполагая для простоты, что амплитуды мод имеют гауссово распределение, из выражения (8.6.12) получаем:

Лтр = 0,441/Ауо. (8.6.18)

С другой стороны, в случае однородно уширенной линии спектр генера­ции стремится сосредоточиться в узкой области около центральной часто­ты у0, что обусловлено эффектом пространственного выжигания дырок, см. раздел 7.7. Таким образом, предполагая, что лазер изначально не син­хронизован, следовало бы ожидать, что импульсы спонтанного излучения (см. рис. 8.15) будут значительно более уширены, чем величина 1/Ау0, где Ау0 — ширина линии усиления. В этом случае механизм, продемонстриро­ванный на рис. 8.20в, является действительно эффективным при уменьше­нии длительности импульса (т. е. при уширении его спектра). Однако этому уменьшению противодействует уширение длительности импульса, которое имеет место, когда импульс проходит через активную среду, и которое связа­но с уменьшением ширины линии генерации импульса. Теория активной синхронизации мод для случая однородно уширенной линии была достаточ­но детально и просто описана в работе Куйзенга и Сигмана[17] и позднее представлена в более общем виде в работе Хауса [18]. В данном разделе будут рассмотрены лишь наиболее значимые результаты, а более подробное описа­ние читатель может найти в приложении Г. При обычных условиях профиль интенсивности может быть описан гауссовой функцией, ширина Ахр которой на половине высоты максимума приближенно задается выражением:

&тр = 0,45/(утДу0)1/2, (8.6.19)

Где ут — частота модуляции (ут = сот/2к = с/2Ь для синхронизации мод в режиме второй гармоники). Если сравнить выражения для длительностей импульсов в случае неоднородно уширенной (8.6.18) и однородно уширен­ной (8.6.19) линий усиления при одном и том же значении ширины лазерной линии (т. е. при Лу5 = Ду0), то нетрудно видеть, что поскольку (уш/Ду0) 1, имеем (Атр)однородн » (Лунеоднород„- Можно, таким образом, отметить, что ме - ханизм сужения длительности импульса, изображенный на рис. 8.20в, не играет сколько-нибудь существенной роли в случае неоднородно уширенной линии, хотя, очевидно, действует и в этом случае. Действительно, длитель­ность импульса в данном случае определяется обратной шириной линии даже без выполнения условия синхронизации мод. И основная роль модулятора здесь состоит в осуществлении такого синхронизма между модами, на кото­рых происходит генерация, при которой световые импульсы (см. рис. 8.15) проходят через модулятор в те моменты времени, когда потери минимальны (рис. 8.20а).

Пример 8.7.AM-синхронизация мод при использовании непрерывного аргонового лазера и Nd:YAG лазера. Вначале рассмотрим аргоновый ла­зер, работающий в режиме синхронизации мод (длина волны зеленого перехода X = 514,5 нм). Линия данного перехода является доплеровски уширенной с шириной Ау5=3,5ГГц. Из выражения (8.6.18) находим Атр = 126 пс. Теперь рассмотрим Nd:YAG лазер, генерирующий на длине волны X = 1,064 мкм. Уширение линии данного перехода связано с фонон - ными процессами, происходящими в кристаллической решетке, и ширина линии здесь составляет Av0 = 4,3 см-1 = 129 ГГц при температуре Т = 300 К. Возьмем резонатор с оптической длиной Le= 1,5 м и рассмотрим случай, когда AM-модулятор помещен на одном из концов резонатора (рис. 8.19а). Таким образом, получаем vm = c/2Le = 100 МГц, и из выражения (8.6.19) находим Атр = 125 пс. Следует отметить, что длительности импульсов Атр в рассмотренных случаях однородно и неоднородно уширенных линий прак­тически не отличаются, несмотря на то что ширина линии в Nd: YAG лазе­ре почти в 30 раз больше, чем тот же параметр в аргоновом лазере.

Для описания механизма ЧМ-синхронизации мод предположим, что мо­дулятор, показатель преломления п которого модулируется по синусоидаль­ному закону с частотой сот, помещен на одном из концов резонатора. Следо­вательно, в этом случае любая заданная мода будет испытывать изменяю*

Щийся во времени сдвиг фазы, определяемый как п» (р = (2пЬ'/Х) • n(t), где!/ — длина модулятора. Та­кие промодулированные по фазе моды будут де­монстрировать боковые полосы (см. выражение (7.10.5)), чьи частоты при условии сот = Асо будут совпадать с частотами соседних мод. Таким об-

UUUUL

подпись: uuuulРазом, такие моды будут снова связанными и их рис. &.21 1

Фазы синхронизованы [161, хотя синхронизации ЧМ-синхронизация мод.

~ ^ ч Временная зависимость

Между ними будут отличаться от условия (8.6.1). показателя преломления

В представлении временной области ЧМ-синхро - модулятора п и

Интенсивности I выходного низацию мод можно описать так, как это пока - излучения лазера

Зано на рис. 8.21. Заметим, что в этом случае име­ются два устойчивых состояния синхронизации мод, при которых световой импульс проходит через модулятор либо при каждом минимуме функции n(t) (импульсы, изображенные сплошными линиями), либо при каждом мак­симуме (импульсы, изображенные штриховыми линиями).

Для понимания этого механизма необходимо вначале отметить, что, по­скольку оптическая длина модулятора равна L'e = n(t)L этот тип модулятора производит модуляцию эффективной длины резонатора Le. Таким образом, дей­ствие модулятора эквивалентно тому, как если бы в резонаторе без модулятора заставили колебаться одно из зеркал с частотой сот. В соответствии с ситуаци­ей, изображенной на рис. 8.21, импульсы в режиме синхронизации мод стре­мятся попасть на зеркало в тот момент времени, когда оно находится в одном из своих крайних положений (т. е. когда оно находится в покое). Следует отме­тить, что после отражения от движущегося зеркала фаза импульса будет изме­няться по закону, близкому к параболе, либо с положительным знаком (для импульсов, изображенных сплошной линией), либо с отрицательным знаком (для импульсов, изображенных штриховой линией), и спектр таких импульсов будет слегка уширен. В конечном итоге модуляция фазы импульса, а, следова­тельно, и его длительность достигнут такого состояния, когда спектральное уширение, связанное с каждым последующим отражением от движущегося зеркала, будет компенсироваться сужением спектра в результате прохожде­ния импульса через усилитель. Для понимания данного процесса (т. е. попада­ния импульса на движущееся зеркало в момент, когда оно находится уже поч­ти в неподвижном состоянии) можно провести анализ устойчивости системы. Однако такой анализ является достаточно сложным, и в силу некоторых огра­ничений, присущих данному типу синхронизации мод, он рассматриваться здесь не будет. Действительно, ЧМ-синхронизация мод используется на прак­тике не так часто. Это связано с двумя основными причинами:

■ импульсы являются частотно модулированными;

■ синхронизация такого типа обладает некоторой нестабильностью и, в ча­стности, это зачастую приводит к перескокам между двумя состояниями, показанными на рис. 8.21.

В мощных импульсных лазерах (с большим коэффициентом усиления) АМ-синхронизация мод, как правило, реализуется с помощью амплитудного модулятора, основанного на ячейке Поккельса. Возможная конфигурация

Модулятора на ячейке Поккельса изображена на рис. 8.5а. Прикладываемое к ячейке напряжение модулируется по синусоидальному закону от нуля до доли четвертьволнового напряжения. При непрерывной накачке и в лазерак с небольшим усилением АМ-синхронизация обычно осуществляется акустооп - тическим модулятором, поскольку потери, вносимые этим модулятором в ре* зонатор, меньше, чем модулятором на ячейке Поккельса. Однако акустоопти - ческий модулятор, используемый для синхронизации мод, значительно отли­чается от того, который применяется при модуляции добротности (см. рис. 8.7), поскольку грань, к которой прикреплен преобразователь, и противоположная грань оптического блока вырезаны параллельно друг другу. Звуковая волна, возбуждаемая преобразователем, теперь отражается назад противоположной гранью блока. Таким образом, если длина оптического блока равна целому числу полуволн звуковой волны, то возникают стоячие звуковые волны. По­скольку амплитуда стоячей волны модулируется во времени по синусоидаль­ному закону, то так же будут модулироваться и дифракционные потери. Мож­но показать, что если звуковая волна осциллирует на частоте со, то дифракци­онные потери будут промодулированы с частотой 2со. Рассмотрим стоячую звуковую волну вида 5 = 50 (совсо^Хвіп^г). Дифракционные потери в моду­ляторе достигают максимума в те моменты времени, когда имеют место мак­симумы амплитуды стоячей волны, которые достигаются дважды за период колебаний (а именно, при і = Ои при £ = к/со). Таким образом, потери моду­лируются с частотой 2со, и синхронизация мод в режиме основной частоты (см. рис. 8.19а) происходит при выполнении следующих двух условий:

■ если модулятор расположен как можно ближе к одному из зеркал резо­натора;

■ если частота модуляции 2у равна величине (с/2Ь) и преобразователь воз­буждается с частотой V, равной с/41, (например, V = 50 МГц при Ь = 1,5 м). В случае ЧМ-синхронизации мод (как для импульсных, так и для непре­рывных лазеров), как правило, применяется электрооптический фазовый модулятор на основе ячейки Поккельса. Здесь одна из двух осей, например х, вдоль которой наводится двулучепреломление (см. рис. 8.56), ориентирова­на вдоль оси поляризации. Таким образом, пучок не претерпевает поворот плоскости поляризации при прохождении через ячейку Поккельса, но при этом имеет место фазовый сдвиг, определяемый как ф = (2л1//к)пх, где I/ — длина ячейки Поккельса, и пх — показатель преломления для поляризации вдоль направления х. Если теперь промодулировать напряжение на ячейке Поккельса сигналом синусоидальной формы, то показатель преломления пх, в силу эффекта Поккельса, будет также промодулирован по синусоидально­му закону, и фаза пучка в этом случае будет изменяться таким же образом.

ПРИНЦИПЫ ЛАЗЕРОВ

Лазерная резка и гравировка в Киеве

Гравировка по металлу проводится на профессиональном оборудовании. Гравировка с высокой детализацией применяется для оформления подарков, памятных вещей.

ПРОСТРАНСТВЕННАЯ И ВРЕМЕННАЯ КОГЕРЕНТНОСТЬ ТЕПЛОВЫХ ИСТОЧНИКОВ СВЕТА

В данном разделе приводится краткое описание когерентных свойств света, который излучается обычной лампой (лампой накаливания или га­зонаполненной лампой). Поскольку свет в этом случае обусловлен спон­танным излучением многих атомов, по существу …

УРАВНЕНИЕ ИОНИЗАЦИОННОГО БАЛАНСА

В результате соударений частиц с электронами в объеме электрического разряда происходит постоянное образование электронов и ионов. Ударная ио­низация осуществляется присутствующими в разряде горячими электронами, т. е. теми, энергия которых больше …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.