ОСНОВЫ ЭНЕРГОСБЕРЕЖЕНИЯ И ЭНЕРГОАУДИТА
УСЛОВИЯ ОДНОЗНАЧНОСТИ ПРОЦЕССОВ ТЕПЛООБМЕНА
Для решения практических задач энергосбережения в строительстве и промышленности требуется знание теплового потока, градиента температур, распределения температур внутри объема тела. Поэтому для каждого конкретного случая к дифференциальному уравнению теплопроводности добавляют математические условия или ряд дополнительных уравнений, называемых условиями однозначности задачи.
Условия однозначности включают в себя геометрические, физические, временные и граничные условия.
Геометрические условия характеризуют геометрические и линейные размеры тела, участвующего в процессе теплообмена.
Физические условия характеризуют физические свойства тела, среды (X, с, р, а) или задается закон внутреннего тепловыделения.
Временные или начальные условия характеризуют особенности протекания процесса во времени или распределение температуры внутри тела в начальный момент времени: при т = 0 и Т = f (x, y, z). Очень часто в начальный момент времени тело имеет равномерную одинаковую температуру по всему объему: т = 0 и Т = Т0 = const.
Граничные условия характеризуют процессы теплообмена между поверхностью тела и окружающей средой.
Граничные условия задаются несколькими возможными случаями:
I рода - задается распределение температуры на поверхности тела: Тп =f (x, y, z, т); очень часто Тп = const.
II рода - задается распределение теплового потока на поверхности тела: qH = f (x, y, z, т); очень часто qH = const.
III рода - задаются температура окружающей среды Тс и закон теплообмена между средой и поверхностью тела. Эти законы зависят от многих факторов и поэтому, чаще всего, используется закон теплообмена Ньютона:
Q = а(Тп — Тс) или —X(dJ/dn) = а(Тп — Тс).
IV рода (условия сопряжения) - характеризуют процессы теплопроводности между соприкасающимися поверхностями различных тел, когда температура в точке сопряжения тел одинакова, но тепловые потоки разные.
Вопросы стационарной и нестационарной теплопроводности для плоских, цилиндрических, тел сложной конфигурации, расчета температурных полей и энергосбережения рассмотрены в [13, 37].