ОСНОВЫ ЭНЕРГОСБЕРЕЖЕНИЯ И ЭНЕРГОАУДИТА
ТЕПЛООБМЕН ПРИ КИПЕНИИ ЖИДКОСТИ
Кипением называется процесс образования пара в жидкости, нагретой выше температуры насыщения. Физические условия процесса образования пара при нагреве жидкостей отличаются большой сложностью. Для процесса кипения необходимы три основных условия:
1) перегрев жидкости - нагрев жидкости до температуры насыщения (температуры кипения при соответствующем давлении) и более;
2) наличие центров образования пузырьков пара на поверхности стенки или внутри объема жидкости, каковыми могут служить взвешенные частицы, неровности поверхности стенок, углубления, впадины, трещины, присущие в той или иной мере шероховатой поверхности твердой стенки;
3) постоянный подвод теплоты.
Различают два основных режима кипения: пузырьковое и пленочное.
Пузырьковое кипение имеет наибольшее распространение в практических условиях (паровые котлы, стальные экономайзеры).
Зарождаясь в отдельных точках обогреваемой поверхности, где работа сил адгезии (отрыва жидкости от поверхности) наименьшая, пузырьки пара вначале увеличиваются в размере, затем отрываются от стенки и поднимаются через слой жидкости в паровое пространство. Их рост и движение вызывают интенсивное перемешивание жидкости.
Если кипение происходит в неподвижной жидкости (кипение в большом объеме), то отрыв пузырей от стенки вызывается действием архимедовой силы. При интенсивном вынужденном течении жидкости отрыв пузырей происходит под воздействием динамического потока. Чем выше скорость потока, тем меньшими оказываются отрывные диаметры пузырей.
Если же основная масса жидкости будет недогрета до температуры насыщения, то пузыри пара, выходя из перегретого пристенного слоя твердой поверхности, попадают в более «холодную» среду (жидкость) и там конденсируются. Такой процесс называется поверхностным кипением. При определенных условиях пузырьковый режим переходит в пленочный режим кипения, когда жидкость в основном не соприкасается с поверхностью нагрева, а отделена от стенки непрерывно восстанавливающейся паровой пленкой. Такое перерождение режима носит резкий характер и является крайне нежелательным в практическом отношении. Пленочный режим кипения образуется по двум причинам: плохая смачиваемость поверхности нагрева и большая тепловая нагрузка поверхности нагрева.
Паровая пленка, обладающая меньшим коэффициентом теплопроводности, создает наибольшее термическое сопротивление между обогреваемой поверхностью и кипящей жидкостью. Следствием этого является падение значений коэффициента теплоотдачи, а максимальная тепловая нагрузка, предшествующая резкому падению коэффициента теплоотдачи при переходе к пленочному кипению, называется критической тепловой нагрузкой дкр. Для воды в условиях атмосферного давления и естественной конвекции отмечаются следующие параметры
ДТкр = 25 °С; акр = 5,85 • 104 Вт/(м2 • К); дкр = 1,46 • 106 Вт/м2.
С повышением давления значения критического температурного напора уменьшаются. Для области пузырькового кипения воды в диапазоне давлений 1.40 кг/см2 (0,1.4 МПа) применимы зависимости
А = 3,0 q0Jp°,15; а = 38,7 ДТ 2>33/>5,
Где q и p следует подставлять соответственно в Вт/м2 и кг/см2.
Знание критических параметров жидкости при кипении имеет большое практическое значение, ибо превышение критического температурного напора приводит к резкому снижению производительности кипятильных установок. Когда же заданным является тепловой поток и оказывается более критического значения, происходит резкое повышение температуры обогреваемой стенки до недопустимого предела. С увеличением давления критическое значение теплового потока вначале заметно возрастает, затем падает и при некотором критическом давлении становится равным нулю. Большие значения коэффициентов теплоотдачи а, Вт/(м2 • К) при кипении (500.5000) и конденсации (4000.20 000) воды позволили весьма эффективно использовать эти процессы в промышленных устройствах.