ГИДРОИЗОЛЯЦИЯ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ПРОМЫШЛЕННЫХ И ГРАЖДАНСКИХ СООРУЖЕНИЙ
ГИДРОИЗОЛЯЦИЯ ГРАЖДАНСКИХ СООРУЖЕНИЙ
Авторы: JI. Н. Беляев, Г. К. Дмитриева, В. С. Искрин, Ю. А. Иванов, Д. Б. Ткаченко, О. И. Яковлев
Характерными особенностями проектирования и строительства промышленных и гражданских сооружений на современном этапе является развитие заглубленных частей сооружений, расположенных ниже уровня дневной поверхности, создание подземных переходов, связывающих отдельные сооружения, а также использование под застройку земель, малопригодных для сельскохозяйственных целей, в ■большинстве случаев заболоченных. В связи с этим вопросы создания надежной гидроизоляции сооружений приобретают все большее значение.
В нашей стране ведется работа по улучшению существующих типов гидроизоляционных и кровельных покрытий и по разработке новых. Повышение индустриальное™ и уровня комплексной механизации и автоматизации, совершенствование технологии и организации строительства, внедрение новых строительных материалов и конструкций, всемерное повышение производительности труда и снижение трудоемкости строительно-монтажных работ открывают широкие возможности для дальнейшей разработки и применения новых гидроизоляционных и кровельных материалов и покрытий.
Основными направлениями в области создания прогрессивных гидроизоляционных и кровельных покрытий являются:
Индустриализация работ путем переноса основного объема гидроизоляционных работ со строительных площадок на заводы — изготовители конструкций н разработка технологических схем с комплексной механизацией и автоматизацией производственных процессов;
Улучшение эксплуатационных свойств существующих и создание новых гидроизоляционных и кровельных материалов, обладающих повышенной надежностью и долговечностью;
Разработка прогрессивных технологических приемов устройства гидроизоляции и кровель, снижающих трудозатраты, повышающих производительность труда и степень механизации работ;
Создание эффективных конструкций сооружений, исключающих необходимость устройства гидроизоляции иди повышающих долговечность и степень надежности гидроизоляционных и кровельных покрытий.
Индустриализация гидроизоляционных работ будет способствовать ускорению темпов строительства в различных климатических районах Советского Союза и улучшению качества гидроизоляционных и кровельных покрытий. Устройство покрытий непосредственно на заводах — изготовителях сборных конструкций или на строительных площадках в специально оборудованных цехах — позволит внедрить высокомеханизированные и автоматизированные гидроизоляционные агрегаты и поточные линии.
Улучшение свойств материалов будет осуществляться в направлении повышения качества нефтяных битумов — придания им повышенной эластичности, морозостойкости, устойчивости против старения, создания на основе улучшенных битумов новых композиций гидроизоляционных полимербитумных эмульсий и мастик, увеличения выпуска рулонных материалов на битумных и дегтевых' вяжущих с повышенным количеством вяжущих за счет сокращения выпуска материалов с малым их содержанием, освоения промышленностью выпуска новых рулонных материалов на стеклооснове (стеклорубе - роид, стеклоизол, стеклобит, лента гидроизоляционная двухслойная ЛГД-1 и др.)> освоение изготовления рулонных битумно-полимерных материалов: гудрокама РГМ на основе гудрокамовой мастики МГ-Г-70; фольгоизола и др.
Все более широкое применение будут находить в строительстве морозостойкий листовой полиэтилен и поливинилхлорид. Благодаря этому резко возрастут темпы гидроизоляционных работ за счет замены многослойных битумных покрытий однослойными, снизится зависимость гидроизоляционных работ от климатических, сезонных и погодных условий.
Весьма перспективным направлением является разработка новых композиций на основе синтетических смол: модификация эпоксидных смол каучуками и каучукоподобными материалами, создание новых видов полимерцементных бетонов и растворов, а также полимербе - тонов (без применения цементных вяжущих).
В настоящее время развернуты работы по созданию гидротеплоизоляционных материалов. Внедрение гидротеплоизоляционных материалов (типа пеноэпоксида и др.) также существенно скажется на конструкциях гидроизоляции сооружений с повышенными требованиями к температурно-влажностному режиму. Совмещение теплоизоляции с защитой от проникания воды позволит облегчить конструкции и ускорить темпы возведения сооружений.
Разработка прогрессивных технологических приемов в первую очередь касается безрулонных гидроизоляционных и кровельных покрытий. Применение безрулонных покрытий позволит резко (в 2— 3 раза) сократить трудозатраты на их устройство и снизить стоимость (на 20—30%).
Усовершенствование технологии устройства безрулонных покрытий будет проводиться в направлении создания новых высокопроизводительных и надежных в работе средств механизации, разработки новых материалов для окрасочной и штукатурной гидроизоляции. Материалы для кровельных покрытий должны отличаться повышенной атмосферостойкостью в различных климатических районах. Будут продолжены работы по поиску новых материалов для безрулонных покрытий, предназначенных для использования в районах с суровыми климатическими условиями.
Большое внимание будет уделено исследованию новых способов нанесения безрулонной гидроизоляции. К числу таких методов следует отнести газопламенное напыление битумных и полимерных составов, а также безвоздушное распыление окрасочных материалов.
Усовершенствование технологии сварки листового и рулонного поливинилхлоридного пластиката и полиэтилена целесообразно вести в направлении разработки новых конструкций электровоздушных и газовоздушных горелок, более широкого использования сварки токами высокой частоты, а также способом инфракрасного излучения.
Проводятся работы по отработке технологии инъецирования полимерных составов в бетон непосредственно с поверхности без устройства скважин. Разрабатываются способы инъецирования растворов с применением ультразвука, методом электросиликатизации и электроосмоса.
Дальнейшее усовершенствование технологических процессов по устройству рулонных гидроизоляционных и кровельных покрытий должно идти по пути разработки новых облегченных и надежных в работе механизмов для устройства рулонной изоляции на плоской и наклонной кровле.
Большое значение в настоящее время придается созданию эффективных конструкций сооружений из водонепроницаемых и водостойких бетонов, позволяющих отказаться от устройства гидроизоляционных и кровельных покрытий, экспериментальных гидроизоляционных и кровельных железобетонных панелей на цементах повышенных марок с введением в бетон водостойких уплотняющих добавок.
Уделяется большое внимание разработке новых конструкций температурно-осадочных швов, стыков кровельных панелей и сопряжений элементов сборных железобетонных сооружений. В первую очередь это касается сборных железобетонных резервуаров, плавательных бассейнов я частей сооружений, расположенных ниже уровня грунтовых вод. Эти конструкции должны сочетать простоту исполнения и надежность в эксплуатации.
Классификация видов гидроизоляции
Многочисленные способы гидроизоляции, применяемые при Строительстве сооружений в настоящее время, отличаются один от другого по различным признакам. В настоящем справочнике способы гидроизоляции классифицированы по видам материалов и способам производства работ.
Способы изоляции целесообразно, прежде всего, разделять на основные (наиболее широко применяемые) и специальные. К основным видам изоляции отнесены те, которые располагаются на наружной или внутренней поверхности ограждаемых конструкций (рис. 1). К специальным видам изоляции отнесены: пропиточная, инъекционная и тепло-, гидроизоляционная (рис. 2).
Основные виды гидроизоляции по виду покрытия разделяются на две группы: гидроизоляция с покрытиями из рулонных или листовых материалов и безрулонная гидроизоляция.
Гидроизоляция из рулонных и листовых материалов заводского изготовления по принципу крепления материалов к основанию включает в себя оклеечные покрытия и покрытия с жестким креплением листовых материалов.
Оклеечная гидроизоляция, или, точнее, оклеечные покрытия по составу применяемых листовых материалов подразделяются на две подгруппы: покрытия из битумных листовых (рулонных) материалов и покрытия из листовых синтетических полимерных материалов. Это деление на подгруппы до некоторой степени условно, так как битумные гидроизоляционные материалы часто имеют в своем составе различные полимерные добавки, например каучук, полиизобутилен, полиэтилен и др. К листовым синтетическим полимерным материалам отнесены материалы, не содержащие в себе битумов или дегтей.
Далее, покрытия из битумных материалов следует различать по наличию или отсутствию в этих материалах основы (каркаса): картона, бумаги, ткани. По этому признаку различают покрытия из так называемых основных и безосновных материалов.
Оклеечные покрытия из листовых полимерных синтетических материалов в настоящее время устраивают с применением сравнительно эластичных листовых или рулонных материалов: поливинилхло - ридного пластиката н полиэтилена высокого давления (низкой плотности).
Обмазочная гидроизоляция отличается от окрасочной тем, что она выполняется преимущественно из горячих битумов или мастик и наносится более толстыми слоями.
Гидроизоляционные покрытия из листовых материалов с жестким креплением к основанию включают покрытия, устраиваемые с применением относительно жестких материалов: металлических (стальных) листов и полимерных синтетических материалов.
Крепление покрытия из стальных листов к ограждающей конструкции (основанию) производится с помощью анкеров или других закладных частей, свариваемых с покрытием, а пластмассовые крепятся болтами, шурупами, дюбелями или на клею.
Жесткие полимерные листовые материалы не нашли еще широкого применения для гидроизоляции сооружений и поэтому в справочном пособии не рассматриваются.
Безрулонную гидроизоляцию устраивают нанося на изолируемую поверхность жидкие или пластичные компоненты, образующие водонепроницаемое покрытие в результате отверждения смеси компонентов (растворов) вследствие физических или химических процессов. Свойства таких покрытий в большей степени, чем покрытия из рулонных и листовых материалов, зависят от технологии производства работ и соблюдения технологических режимов.
Безрулонная гидроизоляция подразделяется по способу нанесения на основание на две подгруппы: окрасочную и штукатурную.
Окрасочную гидроизоляцию выполняют нанося пленкообразующие жидкие или пластичные материалы малярными приемами: напылением и набрызгом с помощью различных краскораспы - лительных механизмов, кистями, щетками и шпателями. По составу исходных материалов различают следующие типы окрасочных покрытий: на основе органических вяжущих и на основе органо-мине - ральных вяжущих.
Битумные окрасочные покрытия, для повышения их прочности и трещиностойкости, могут быть армированы стекломатериалами или металлической сеткой. Поэтому следует различать армированные и Неармированные окрасочные покрытия.
Битумно-полимерные покрытия являются, по существу, улучшенными (модифицированными) битумными покрытиями. Их отличие состоит в том, что для придания большей деформативности, эластичности, трещиностойкости, тепло - и морозостойкости в состав битумных материалов вводятся добавки синтетических полимерных материалов, в частности каучук и каучукоподобные вещества.
По структуре и физическому состоянию применяемых материалов различают покрытия из полимербитумных эмульсий и мастик. К первым относятся битумно-латексные покрытия, образуемые нанесением смеси битумной эмульсии и синтетического латекса, во вторым — битумно-наиритовые и битумно-резиновые сплавы.
Полимерные окрасочные покрытия включают в себя покрытия из синтетических смол и лакокрасочные покрытия, применяемые для Гидроизоляции сооружений сравнительно редко.
Рис. 1. Классификация основных |
Ґ
|
Видов гидроизоляции сооружений
Покрытия из синтетических смол образуют, нанося на изолируемую поверхность составы, содержащие синтетические смолы и добавки различного назначения: растворители, отвердители, наполнители, а иногда и пигменты. В качестве пленкообразующих материалов чаще всего используют эпоксидные смолы. Наиболее широко применяются эпоксидные, эпоксидно-дегтевые и эпоксидно-фурфуооловые покрытия.
Рис. 2. Классификация специальных видов гидроизоляции |
Лакокрасочные покрытия устраивают, нанося на изолируемую поверхность водостойкие синтетические лаки или краски заводского изготовления. К этому типу покрытий относятся, например, покрытия из лака этиноль и из химически стойких эмалей ХСЭ-1 и др.
Основным видом полимерцементной гидроизоляции являются цементно-латексные покрытия, образуемые нанесением окрасочных составов на основе синтетических латексов в смеси с портландцементом, пуццолановым или сульфатостойким цементом и жидким стеклом.
Штукатурная гидроизоляция отличается от окрасочной следующими признаками: меньшей подвижностью наносимых иа основание составов, включающих, как правило, более крупные наполнители, большей толщиной покрытий (6—50 мм) и способами нанесения изолирующих составов, которые аналогичны способам нанесения известковых и цементных строительных штукатурок.
Штукатурная гидроизоляция создается на основе органических И неорганических вяжущих. К штукатурной гидроизоляции на основе неорганических вяжущих (цементно-пвсчаная) относятся: покрытия из торкрет-бетона, наносимого с помощью цемент-пушки; покрытия из пневмобетона, наносимые с помощью растворонасоса и пневматической насадки, покрытия из коллоидно-цементного раствора. Все виды покрытий из цементно-песчаной штукатурки могут в своем составе иметь уплотняющие добавки, повышающие водостойкость и водонепроницаемость покрытий.
К штукатурной битумной гидроизоляции (на основе органических вяжущих) относятся покрытия из холодных асфальтовых мастик, покрытия на основе эмульсионных битумных паст, а также из горячих асфальтовых мастик и растворов.
Штукатурную полимерную гидроизоляцию устраивают из по- лимербетонов, связующими в которых являются различные синтетические полимеры, например: фенолоформальдегидные, фурановые, эпоксидные и полиэфирные смолы. В качестве заполнителей используют гравий, песок, щебень и другие заполнители, применяемые в цементных бетонах и растворах.
Полимерная штукатурная гидроизоляция не нашла еще широкого применения в строительстве. Обладая рядом положительных свойств, она дорогостояща, что вызвано высоким расходом связующих. Этот вид гидроизоляции не нашел отражения в СНиП и в справочном пособии не рассматривается.
Специальные виды гидроизоляции разделяются на пропиточную, инъекционную и теплогидроизолянию.
Пропиточная и инъекционная изоляции, как правило, используются в качестве дополнительной к поверхностной изоляции или при ликвидации протечек воды через ограждающую конструкцию в тех случаях, когда ремонт и замена гидроизоляционного покрытия невозможны или сопряжены с большими затратами.
Пропиточная гидроизоляция основана на заполнении пор, микротрещин и других пустот, имеющихся в теле конструктивного элемента, водонепроницаемыми материалами. Пропитка элементов производится в открытых ваннах или в автоклавах. В качестве пропиточных материалов применяются битумы, каменноугольные пеки и петролатум.
Сущность инъекционной гидроизоляции заключается в нагнетании в тело бетона через специально пробуренные скважины уплотняющих растворов с целью придания сооружению или его элементу водонепроницаемости и прочности. Инъекционные способы защиты конструкций и сооружений разделяются на следующие виды: цементация, силикатизация и смолизация.
Для производства инъекционных работ применяют следующие материалы: цементный раствор, жидкое стекло с раствором хлористого кальция, а также другие электролиты и синтетические смолы (кар - бамидная и др.).
Теплогидроизоляция не нашла еще широкого распространения в практике строительства и поэтому в настоящем справочном пособии не рассматривается.
Для оценки свойств гидроизоляционных материалов и покрытий в технической литературе принята следующая терминология (см. также табл. 1).
Таблица 1
|
Продолжение табл. 1
|
Атмосферостойкость, или погодоустойчивость — способность материала длительное время сохранять свои первоначальные свойства и структуру после совместного воздействия погодных факторов (дождя, света, воздуха, облучения и колебаний температуры). Атмосферостойкость выражается временными показателями (час, сутки, месяц, год) или оценивается в баллах по специальной шкале.
Биологическая стойкость — способность материала сопротивляться агрессивным биологическим факторам (бактерии, микробы, грибы, насекомые грызуны, прорастание растительности).
Водонепроницаемость — способность материала сопротивляться фильтрации напорной воды. Определяется предельным давлением (Па), при котором вода не проникает через образец материала за Определенное количество часов.
Водостойкость — способность материала длительное время сохранять свои первоначальные свойства при нахождении в воде.
Долговечность — способность материала длительное время сопроТивляться комплексному воздействию атмосферных и других фактоРов в условиях эксплуатации.
Коэффициент паропроницаемости — количество водяного пара, г, Проникающего в течение 1 ч через 1 м2 площади образца толщиной 1 м при разности парциальных давлений водяного пара с одной и другой стороны образца 133 Па.
Морозостойкость — способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без существенных признаков разрушения и значительного снижения прочности. Оценивается числом циклов попеременного замораживания и оттаивания.
Морозостойкость рулонного материала пленки устанавливают на «шкале гибкости», определяя минимальный диаметр стержня, изгибание вокруг которого при отрицательной температуре не вызывает механического разрушения испытываемого материала.
Старение материала — процесс изменения (ухудшения) свойств материала во времени под воздействием природных илц искусственных факторов.
Температура стеклования — максимальная температура, при которой материал становится хрупким.
Трещиностойкость — способность материала сохранять сплошность при образовании и раскрытии трещин в несущей конструкции в пределах, допустимых СНиП. Определяется путем замера ширины трещины в несущей конструкции в момент образования трещины в покрытии.
Укрывистость — способность материала (лакокрасочного, растворенного и т. п.) давать на окрашиваемой поверхности сплошную пленку при минимальном его расходе. Единицей измерения укрыви - стости является расход материала в граммах на 1 м5 окрашиваемой поверхности.
Химическая стойкость — способность материала сопротивляться агрессивному воздействию среды или химическому взаимодействию с контактируемым материалом (кислоты, щелочи, растворенные в воде соли, газы и др.).