Перенос электродного металла
Металл электрода в виде капель переходит в сварочную ванну. Схематично перенос металла электрода можно представить в следующем виде.
В начальный момент металл на конце электрода под - плавляется и образуется слой расплавленного металла. Затем под действием сил поверхностного натяжения и силы тяжести этот слой металла принимает форму капли с образованием у основания тонкой шейки. Поперечное сечение шейки капли с течением времени уменьшается, что приводит к значительному увеличению плотности тока у шейки капли. Удлинение шейки продолжается до момента касания капли поверхности сварочной ванны. В этот момент происходит короткое замыкание сварочной цепи. Резкое возрастание тока приводит к разрыву шейки и в следующее мгновение вновь возникает, но уже между торцом электрода и каплей. Под давлением паров и газов зоны дуги капля с ускорением внедряется в жидкий металл сварочной ванны. При этом часть металла в виде брызг выбрасывается из зоны сварки. Затем процесс каплеобразования повторяется.
Время горения дуги и короткого замыкания составляет примерно 0,02—0,05 секунды. Частота и продолжительность короткого замыкания в значительной степени зависят от длины сварочной дуги. Чем меньше длина дуги, тем больше коротких замыканий if тем они продолжительнее. Форма и размеры капель металла зависят от сварочного тока, состава и толщины электродного покрытия, положения шва. Перенос электродного металла крупными каплями происходит при сварке на малых токах электродами с тонким покрытием. При больших плотностях сварочного тока и при использовании электродов с толстым покрытием перенос металла происходит в виде потока мельчайших капель. Электродное покрытие снижает поверхностное натяжение металла. Кроме того, газообразующие компоненты, выделяя большое количество газов, создают в зоне дуги повышенное давление, которое способствует размельчению капель жидкого металла.
На процесс переноса капель металла в дуге действует газовое дутье, представляющее собой поток газов, направленный вдоль дуги в сторону сварочной ванны. При сварке электродом с толстым покрытием стержень электрода пла - 'вится быстрее, и торец его оказывается немного прикрытым «чехольчиком» покрытия. Интенсивное газообразование в небольшом объеме «чехольчика» приводит к явлению газового дутья, ускоряющего переход капель металла в сварочную ванну.
Влияние силы тяжести особенно сказывается при сварке нижних швов (способствует отрыву капель) и потолочных швов (препятствует переносу металла в шов).
Важным фактором, влияющим на перенос металла в дуге, являются электромагнитные силы. Плотность тока, проходящего через жидкую каплю, велика, поэтому сжимающее действие магнитного поля оказывается заметным. Магнитное поле ускоряет образование и сужение шейки капли, а следовательно, и отрыв ее от торца электрода. Электрическое поле, напряженность которого направлена вдоль дуги в сторону сварочной ванны, действует на жидкую каплю^ ускоряя процесс отрыва капель от торца электрода и переход ее в сварочную ванну металла. Перенос капель электродного металла на свариваемый шов при потолочной сварке обеспечивается в основном действием магнитного и электрического полей, а также явлением газового дутья в дуге.
Капли металла, проходящие через дугу, имеют шлаковую оболочку, которая образуется от плавления веществ, входящих в покрытие электрода. Эта оболочка защищает металл капли от окисления и азотирования, обеспечивая хорошее качество металла шва.
Доля электродного металла в составе металла шва различна и зависит от способа и режима сварки, а также от вида сварного шва. При ручной сварке доля электродного металла колеблется в широких пределах (30—80%), при автоматической сварке она составляет 30—40%.
Производительность сварки в значительной степени зависит от скорости расплавления электродного металла, которая оценивается коэффициентом расплавления. Коэффициент расплавления численно равен массе электродного металла (г), расплавленного в течение одного часа, приходящегося на один ампер сварочного тока.
Коэффициент расплавления зависит от ряда факторов, влияющих на процесс плавки электродного металла. При обратной полярности коэффициент расплавления больше, чем при прямой полярности, так как на аноде выделяется больше теплоты и температура анода выше, чем у катода. Состав покрытия и его толщина влияют на коэффициент расплавления. Это объясняется, во-первых, значением эффективного потенциала ионизации газов; во-вторых, изменением баланса теплоты дугового промежутка. Коэффициент расплавления при ручной дуговой сварке составляет 6,5—14,5 г/(А ч). Меньшие значения имеют электроды с тонким покрытием, а большие — электроды с толстым покрытием.
Для оценки скорости сварки шва пользуются коэффициентом наплавки. Этим коэффициентом оценивают количество электродного металла, введенного в свариваемый шов.
Коэффициент наплавки меньше коэффициента расплавления на величину потерь электродного металла из-за угара и разбрызгивания. Эти потери при ручной сварке достигают 25—30%; при автоматической сварке под флюсом потери составляют только 2—5% от количества расплавленного электродного металла. Знание этих коэффициентов позволяет произвести расчет необходимого количества электродного металла для сварки шва установленного сечения и определить скорость сварки шва.
Величина коэффициента наплавки указывается в паспортных данных на каждой пачке электродов, что позволя
ет оценивать производительность процесса сварки при вы - бопе той или иной марки электрода.