ТЕПЛОВЫЕ ТРУБЫ
Как уже указывалось, тепловые трубы обеспечивают работу двигателя Стирлинга от различных нетрадиционных источников энергии. Тепловые трубы можно использовать с любым источником тепловой энергии, благодаря чему система с двигателем Стирлинга становится многотопливной. В будущем в связи с топливной проблемой и необходимостью использования всех источников энергии система тепловая труба — двигатель Стирлинга получит большее признание. Поэтому конструкторам и пользователям двигателя Стирлинга следует ознакомиться с устройством тепловых труб. В данной книге, которую считаем вводным курсом, мы сочли необходимым привести некоторые краткие данные по принципу действия и использованию тепловых труб. Желающим более детально изучить этот вопрос следует обратиться к книгам [29, 30]. Более подробная информация по системе тепловая труба — двигатель Стирлинга, разработанной фирмой «Филипс», содержится в статье [31].
Примечательно, что тепловая труба существует всего около 20 лет, хотя сама идея была выдвинута еще в 1942 г. [32].. Тепловая труба по своей сути является устройством для передачи тепла между двумя точками, расположенными на значительном расстоянии друг от друга, при очень малых градиентах температуры. Последний факт делает ее очень полезной для систем с двигателем Стирлинга, в особенности для систем с термоаккумулирующей установкой.
При существующих разновидностях тепловых труб основной принцип их действия во всех случаях одинаков и заключается в переносе тепла находящимся в замкнутом пространстве веществом с фазовым переходом. Рассмотрим тепловые трубы, работающие только по этому принципу, так как в данном кратком разделе невозможно охватить всю обширную литературу по этому быстро развивающемуся направлению. Число публикаций по тепловым трубам с каждым годом возрастает, и очень трудно следить за всеми новыми предложениями. Но тем, кто действительно интересуется двигателями Стирлинга, не следует упускать из виду успехов в развитии тепловых труб. (О быстром развитии тепловых труб свидетельствует тот факт, что число публикаций и патентов по ним, появившихся после 1964 г., превышает число соответствующих работ по двигателям Стирлинга, опубликованных после 1816 г.) Элементарная типичная конструкция тепловой трубы показана на рис. 5.9. Она состоит из замкнутой металлической трубы, внутренняя поверхность которой покрыта слоем пористого материала типа мелкоячеистой проволочной сетки, который при работе трубы обладает капиллярным действием. Такой пористый материал обычно называют фитилем. Находящаяся в трубе жидкость впитывается в фитиль, а незанятый внутренний объем заполняется парами этой жидкости. Один конец называют испарителем, а второй — конденсатором. Тепло подводится к испарителю, где происходит испарение жидкости. Пар в трубе под действием разности давлений переносится к конденсатору, где он конденсируется, выделяя тепло, полученное при парообразовании. Пар превращается в жидкость, которая под действием капиллярных сил возвращается по фитилю обратно в испаритель. В некоторых случаях этому обратному течению способствует расположение тепловой трубы, т. е. ему помогает сила тяжести.
В зависимости от требуемой плотности теплового потока и рабочей температуры в тепловой трубе можно использовать почти любое вещество от воды до жидкого водорода или жидкого серебра. Но самым предпочтительным веществом является натрий, поскольку при использовании другого подходящего вещества — калия — требуется строгое соблюдение мер техники
Контейнер Испарения | участок Рис. 5.9. Принципиальная схема тепловой трубы [29]. Конйенсации |
Безопасности. При выборе рабочей жидкости для тепловой трубы рекомендуется исходить из того, чтобы давление ее паров находилось в интервале значений 0,01—1 МПа. Соответствующие температуры натрия составляют 650—1250 °С [31].
В системах с двигателем Стирлинга трубы нагревателя помещают в зону конденсации тепловой трубы, и испарившийся натрий конденсируется на этих трубах. Нагреватель должен быть изготовлен из нержавеющей стали. В испытаниях, проведенных фирмами «Филипс» [31] и «Юнайтед Стирлинг» [32] с двигателями мощностью менее 10 кВт, было отмечено заметное увеличение удельной мощности, обусловленное увеличением коэффициента теплоотдачи на наружной стенке тепловой трубы, а по существу, повышением эффективности горелки. Однако существует предел плотности теплового потока, который может быть передан тепловой трубой и при превышении которого, возможно, придется использовать контур с жидким металлом. Тем не менее следует отметить, что тепловые потоки, требуемые для современных двигателей Стирлинга, тепловая труба вполне обеспечивает. Самая большая нз используемых для работы с двигателем Стирлинга тепловых труб мощностью 60 кВт сконструирована в Великобритании, в Редингском университете и фирмами английского консорциума «Ассошиэйтед энжиниринг дивелопментс» [34], и предназначена для работы с экспериментальным двигателем мощностью 20 кВт в Королевском морском инженерном колледже.
100 |