ХИМИЯ ВОКРУГ НАС

ГОРЕНИЕ И ОКИСЛЕНИЕ

|/ак идёт горение в примусе и керосинке. Наиболее яр - ким примером химических реакций, идущих при уча­стии кислорода воздуха, является горение — тот процесс, с помощью которого мы получаем тепло и свет. Какое бы

Топливо мы ни сжигали — уголь или дрова, керосин или бензии, спирт или светильный газ — главная химическая реакция при горении их одна и та же: углерод и водород, входящие в состав молекул топлива, соединяются с кис­лородом воздуха и образуют углекислоту и воду. Общеиз­вестно, что керосинка даёт жёлтое, светящее пламя, а при­мус — голубое или фиолетовое, почти не светящее пламя. В обоих случаях топливо одно и то же — керосин. По­чему же это происходит?

Керосин — это смесь различных углеводородов, соеди­нений углерода с водородом. Для примера возьмём один из углеводородов керосина — нонан, имеющий состав СуНго. При горении нонан соединяется с кислородом и об­разуются углекислота и вода. Начальное и конечное со­стояния этого процесса можно изобразить химическим уравнением:

С9Н20 + 1402 — 9 С02 + 10 Н20 (пар) + теплота,

Написав такое уравнение, мы допустили, что углеводород сгорает полностью. Это и происходит в исправном примусе. В примусе керосин поступает в горелку под давлением. Испаряясь в нагретой горелке й вырываясь сильной струёй через форсунку, керосин хорошо перемешивается с воз­духом. Смесь получается настолько богатой кислородом, что керосин сгорает полностью. Кроме того, пары керо­сина, проходя через раскалённую часть горелки, не только нагреваются, но и химически изменяются: сложные моле­кулы углеводородов при температуре 400—500 градусов распадаются на более простые, сгорающие легче. Этот распад обычно сопровождается выделением небольшого количества твёрдого углерода — кокса; кокс постепенно засоряет горелку, поэтому время от времени её нужно «прожигать».

Мы знаем, что керосинка всегда даёт копоть или сажу, то-есть очень мелкие частицы угля. Значит, в керосинке идёт неполное сгорание керосина. Керосин испаряется с поверхности фитиля и только тут смешивается с возду­хом. Количество воздуха внутри пламени оказывается не­достаточным. Поэтому и образуются мельчайшие раска­лённые частички угля, от которых ярко светится пламя.

Почему дрова и каменный уголь, сгорая, дают пламя, а древесный уголь горит без пламени? Различные виды твёрдого топлива сгорают по-разному: дрова и каменный

Уголь образуют при горении пламя, а древесный уголь пламени не даёт. Какова же разница между ними?

Древесная масса и каменный уголь — смеси сложных веществ, богатых углеродом. Они содержат также кисло­род и водород. При нагревании дров и каменного угля сложные вещества расщепляются на более простые и в то же время более летучие вещества. Эти вещества, сго­рая, и образуют пламя. Дрова дают большее пламя, чем каменный уголь: они образуют больше летучих веществ.

Древесный же уголь получают неполным сожжением дерева. Хороший древесный уголь — это почти чистый уг­лерод; к нему примешаны только минеральные - вещества, дающие после сгорания золу. Поэтому древесный уголь не образует летучих продуктов и горит без пламени.

Все жидкие вещества и горючие газы, разлагающиеся при высокой температуре с выделением летучих продук­тов, при горении образуют пламя. Твёрдые вещества, не способные давать летучие продукты разложения, горят без пламени. При неполном горении всегда образуется дым, состоящий из твёрдых частичек несгоревшего угля и газообразных продуктов горения — окиси углерода, уг­лекислоты, водяных паров.

Почему керосиновая лампа коптит, а рано закрытая печка даёт угар. Мы можем управлять химическими реакциями, заставлять их протекать нужным нам обра­зом. Примеры этому легко найти в нашем быту.

Керосиновая лампа стала коптить. Ясно, что если вы­деляется копоть, горение идёт не полно. Мы убавили фи­тиль — копоть перестала образовываться. Почему? По­тому, что мы изменили условия горения. Убавив фитиль, мы уменьшили скорость испарения керосина. Количество же поступающего в лампу воздуха осталось прежним. Поэтому горение стало более полным.

А почему рано закрытая печь даёт угар? — Потому, что нарушается режим горения и вместо одной реакции идёт другая. При недостатке воздуха, поступающего в печь, горение идёт не до конца: вместо углекислоты, СО2, обра­зуется окись углерода или, как её иначе называют, угар­ный газ СО. Угарный газ невидим, так как, в отличие от дыма, он не содержит твёрдых частиц. Он очень ядовит.

Окись углерода образуется и при открытой трубе, но так как приток кислорода в печь достаточный, она сгорает и образует углекислоту, уходящую в трубу
(рис. 7, А). При закрытой же трубе продукты горения вы­ходят через печную дверцу в помещение. Если в печи осталось слишком много раскаленного угля, то притока воздуха хватает только на образование окиси углерода и в комнате появляется угар (рис. 7, £).

ГОРЕНИЕ И ОКИСЛЕНИЕ ГОРЕНИЕ И ОКИСЛЕНИЕ

Рис. 7. А нормальное горение при открытой трубе; Б — образование угар­ного газа при большом количестве угля и закрытой трубе.

подпись: рис. 7. а нормальное горение при открытой трубе; б — образование угарного газа при большом количестве угля и закрытой трубе.Эти простые примеры показывают, что, изменяя со­отношения между количествами реагирующих веществ, можно управлять хи­мической реакцией.

Чем отличается горение в печи от го­рения в живом орга­низме? В печке сго­рает топливо. Для организма топливом служит пища. И в организме и в печке углеродистые веще­ства сгорают, пре­вращаясь в углеки­слоту и в воду.

В этом — сходство.

Разница же состоит в том, что в печке горение происходит при высокой тем­пературе, а в живом организме — при низкой и значи­тельно медленнее.

В печах, особенно промышленного типа — доменных, стекольных и др., температура превышает 1000 градусов. Тело человека имеет в среднем температуру 36,6 градуса. Химики установили, что повышение температуры на 10 градусов почти удваивает скорость реакции. Значит, го­рение в печи идёт во много раз быстрее, чем в организме.

Однако дело не только в этом. При высокой темпера­туре реакция может протекать совсем иным путём. При 1000 градусов некоторая часть молекул кислорода (около 1,5 процента) распадается на атомы: 02^20. Значит, горение при высоких температурах можно объяснить тем, что с топливом вступают в реакцию свободные атомы кислорода, число которых по мере их расходования по­полняется путём распада, диссоциации, новых молекул кислорода. Но в живых организмах молекулы кислорода не могут распадаться на атомы. Каким же образом происходит горение в организмах?

Общую теорию таких процессов разработал в конце прошлого столетия русский академик А. Н. Бах. Рядом опытов с простыми углеродистыми соединениями и с ве­ществами, содержащимися в животных и растительных организмах, А. Н. Бах доказал, что при обыкновенной тем­пературе к молекулам этих веществ присоединяются це­лые молекулы кислорода. При этом образуются такие со­единения, которые способны окислять другие вещества так же легко, как и атомарный кислород. Эти соединения, на­зываемые перекисями, являются промежуточными продуктами окисления.

Как же построены молекулы перекисей и какими свой­ствами они обладают?

Познакомимся сначала с простейшей перекисью — пе­рекисью водорода Н202. Строение её изображается фор­мулой Н—О—О—Н. Перекись водорода неустойчива, при хранении она медленно разлагается на воду и кислород: Н202=Н20+0. Значит, один из атомов кислорода в пере­киси «подвижен»,«активен». Поэтому перекись водорода является хорошим окислителем.

В организмах животных и растений перекиси водорода нет, но с группой атомов —О—О—, характерной для пе­рекисей, могут быть связаны атомы углерода органиче­ских соединений. Такие перекиси называют переки­сями органических соединений, и они обна­ружены в живых организмах. Им-то и принадлежит та исключительная роль в процессах медленного окисления в организме, на которую указал А. Н. Бах.

В организмах животных окисление пищевых материа­лов происходит в крови. В красных кровяных тельцах на­ходится сложное белковое вещество, гемоглобин, окрашивающий кровь в красный цвет. В состав гемогло­бина входит железо, придающее ему способность соеди­няться с кислородом. При дыхании гемоглобин окисляется (в лёгких) и превращается в оксигемоглобин. Сам оксигемоглобин не является настоящей перекисью, так как он отдаёт весь присоединённый кислород, а не половину, как это делают истинные перекиси. Но он легко превра­щает в перекиси некоторые пищевые вещества, попадаю­щие в кровь, отдавая им свой кислород, и вновь переходит в гемоглобин. Кислород расходуется на окисление пище­вых материалов, на выработку энергии, необходимой для поддержания жизни.

Есть ли разница между горением и окислением? По

Сходству с горением топлива естественно считать горением все химические процессы, протекающие с выделением тепла и света. Слово «горение» описывает внешние при­знаки и только одну сторону химической реакции — превращение химической энергии в тепловую и световую.

Но для химика описания только этой стороны реакции недостаточно. Он хочет знать, что происходит с каждым из атомов, входящих в состав вещества, как эти атомы из­меняются во время реакции. И вот если с этой сто­роны посмотреть на реакции, происходящие при горении, то оказывается, что всегда какой-либо из атомов сгораю­щей молекулы увеличивает свою положительную валент­ность. Например, при сгорании СО в С02 положительная валентность углерода возрастает с 2 до 4, так как атом углерода оказывается связанным уже не с одним, а с двумя атомами кислорода. Углерод при горении окисля­ется. Поэтому мы называем окислением реакцию, в которой како й-л ибо элемент увеличи­вает свою положительную валентность.

А что делается при окислении с самим окисляющим веществом? В нашем примере окисляющим веществом служит кислород воздуха, простое вещество, которому мы условились (стр. 22) приписывать до реакции нулевую ва­лентность. Входя в состав молекулы СОг, атом кислорода становится двухвалентным отрицательным. Реакцию, в которой атом каког о-л ибо элемента уве­личивает свою отрицательную валент­ность, называют восстановлением. Следо­вательно, кислород воздуха, окисляя углерод СО, сам при этом восстанавливается. Из нашею примера мы ви­дим, чго окисление и восстановление—два процесса - близнеца: они всегда сопровождают друг друга и невоз­можны один без другого.

Всякое ли окисление протекает как горение? Железо, окисляясь, ржавеет. Но разве мы можем сказать, что при этом железо горит. Конечно, нет. Разве в живом орга­низме окисление сопровождается выделением света? — Нет, происходит только выделение тепла. Значит, окисле­ние не всегда сопровождается горением. Но, как правило, все процессы горения являются окислением.

Могут ли горение и окисление происходить без кисло­рода? Окисляемый атом вовсе не обязательно должен отдавать свои валентные электроны именно атому кисло­рода. Очень легко это происходит и с другими элементами. Вернёмся к опыту, описанному на стр. 12. Железо, кото­рое мы погружаем в раствор медного купороса,— простое вещество с нулевой валентностью. Железо активнее меди и вытесняет из раствора медь. В этой реакции вытеснения атом железа отдаёт атому меди 2 электрона и сам приоб­ретает валентность + 2. Значит, и здесь железо окис­ляется! Атом же меди, забрав у атома железа 2 электрона, изменяет валентность с + 2 до нуля, восстанавливается.

Точно так же можно рассмотреть и реакцию между се­рой и железом (стр. 9). Оба они — простые вещества с нулевой валентностью. После реакции валентность же­леза + 2, а серы — 2, следовательно, железо окислилось, а сера восстановилась. Вспомним, что реакция между се­рой и железом сопровождается выделением тепла и света, то-есть горением, хотя кислород в ней и не участвует. Зна­чит, не только окисление, но и горение может происходить без участия кислорода.

Почему железо ржавеет, а золото и серебро — нет? Из всех металлов наиболее широко используется в технике и в быту железо. Большим недостатком железа служит то, что оно легко соединяется с кислородом воздуха и водой, ржавеет. Так как ржавчина непрочно связана с поверхно­стью металла, она легко стирается, распыляется, при­водя к большим потерям металла. Ржавление и подоб­ные ему процессы разрушения металлов называют кор - роз и е й.

Подсчитано, что в результате коррозии во всём мире ежегодно теряется больше 30 миллионов тонн металлов. Это настоящее бедствие. Поэтому химики и физики упорно работают над вопросами борьбы с коррозией.

Ржавчина — это смесь водной закиси железа Ре (ОН)г, окиси железа Ре203, окалины Ре304 и некоторых других веществ. То, что железо окисляется уже при низкой тем­пературе, объясняется его значительной химической ак­тивностью.

Другое дело — серебро, золото, платина и другие бла­городные металлы. Их активность очень мала. Ядра их атомов цепко удерживают валентные электроны и поэтому трудно окисляются. Соединения этих металлов непрочны, они легко распадаются с выделением свободных метал­лов. Хлористое и бромистое серебро, например, разла­гается на свету. На этой реакции основана вся фотокино­промышленность [23]).

Неустойчивость солей серебра можно доказать инте­ресным опытом. Подогреем в стаканчике нашатырный спирт (это — водный раствор аммиака) до 50—60 граду­сов и нальём в него при перемешивании несколько капель раствора ляписа (азотнокислого серебра). Затем добавим несколько капель формалина или раствора виноградного сахара — глюкозы. Через несколько минут на стенках ста­канчика образуется серебряное зеркало, а в растворе по­явится тёмная муть. Формалин или глюкоза восстанавли­вают серебро из его соли. Эта реакция используется для изготовления зеркал.

* *

*

Итак, мы познакомились с составом воздуха и отме­тили особую роль кислорода в природе, которую ему обес­печивает его большая химическая активность. Но очень многие реакции с участием кислорода шли бы совсем иначе, а некоторые — не были бы даже возможны, если бы на помощь кислороду при его воздействии на другие вещества не приходила вода. Вода, подобно кислороду, играет в природе громадную роль и обладает многими очень важными свойствами. Их мы и рассмотрим в сле­дующем разделе.

ХИМИЯ ВОКРУГ НАС

Професійна побутова хімія FreshGlow з Українських компонентів: засіб від нальоту

Сучасне суспільство вимагає від нас не лише стійкості та впорядкування, але й прагнення до найвищого стандарту чистоти та гігієни. Засоби для прибирання стали невід'ємною частиною нашого життя, а вибір таких …

Развитие резистентности насекомых к инсектицидам

В сельском хозяйстве уже много лет происходит борьба с разными видами угроз для урожая. Одним из таких видов - это разнообразие насекомых, которые могут полностью уничтожить собранный урожай. На помощь в этой …

Засоби для сухої дезінфекції поверхонь у приміщеннях ветеринарії та тваринництва

Дезінфекція відіграє ключову роль у забезпеченні безпеки та здоров'я тварин у ветеринарії та тваринництві. Ця процедура є необхідною для знищення потенційних носіїв інфекції та бактерій. Одним із найефективніших методів антисептичної …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.