ГИДРОХЛОРИРОВАНИЕ ПОЛИДИЕНОВ
Согласно современным представлениям, гидрохлорирование полиизопрена, как и олефинов, является электрофильной реакцией и происходит путем присоединения хлористого водорода к двойным связям изопреновых звеньев по правилу Марковникова [116]:
СН3 С^з
-------- СН2-С=СН—СН2------------------- f - неї----------- >- —сн2—с—сн2—сн2------------------------
С1
19 |
Реакция синтетического изопренового каучука марки СКИ-3 с хлористым водородом в растворе при температурах от 0 до 70°С протекает по уравнению второго порядка относительно каучука и хлористого водорода (рис. 1.1), а энергия активации реакции гидрохлорирования составляет 52,5 кДж/моль [117]. Второй порядок реакции по хлористому водороду, по-видимому, обусловлен тем, что взаимодействие молекул НС1 с каучуком идет ступенчато — вначале присоединяется ион Н+, а потом ион С1~. Большая зависимость скорости реакции от концентрации хлористого водорода, чем от концентрации каучука, объясняется, по-видимому, определяющей ролью процесса образования нейтральной ионной пары [117]. Как одно из доказательств участия протона в первой медленной стадии реакции можно рассматривать сильное влияние на скорость гидрохлорирования электрофильных растворителей, связывающих протон с образованием оксониевых солей (рис. 1.2). Растворитель не только ионизирует молекулы хлористого водорода, он влияет также на конформацию молекулярной цепи исход-
2*
Г |
1 |
0,5 3,6 0,7 Lg[C=C] |
_i________ і_______ і______ 0,8 0,9 1,0 lg[HCl] |
О BO 120 Продолжительность реакции, мин |
Рис. 1.L Зависимость скорости реакции гидрохлорирования от концентрации каучука (1) и хлористого водорода (2) при начальной 'концентрации хлористого водорода, соответствующей его стехиометрическому значению. |
Рис. 1.2. Влияние типа растворителя иа скорость гидрохлорирования СКИ-3 (20 °С; концентрация каучука 2 г/100 см3 растворителя; барботаж хлористого водорода в раствор каучука; скорость подачи хлористого1 водорода 42-Ю-7 м3/с): 1 — циклогексан; 2 — четыреххлористый углерод; 3 — бензол; 4 — хлорбензол; 5 — метилен - хлорид; 6 — хлороформ; 7 — 1,2-дихлорэтан.
Ного и гидрохлорированного каучуков, облегчая или затрудняя таким образом протекание реакции гидрохлорирования.
Существенное влияние на скорость гидрохлорирования полиизопрена оказывает температура. При проведении реакции в замкнутом объеме в смеси дихлорэтана с диоксаном (объемное соотношение растворителей 4:1) повышение температуры приводит к увеличению скорости процесса. Однако при барботировании хлористого водорода через раствор каучука в 1,2-дихлорэтане, как это обычно бывает на практике, увеличение температуры замедляет скорость присоединения хлористого водорода к каучуку, что, по-видимому, связано с уменьшением концентрации НС1 в системе из-за уменьшения растворимости газа при повышении температуры (рис. 1.3).
Еще более велико влияние на скорость гидрохлорирования концентрации хлористого водорода. Поэтому в производственных условиях реакцию гидрохлорирования НК или СКИ проводят при низкой температуре в среде растворителя хлористого водорода, например в среде 1,2-дихлорэтана или метиленхлорид а.
Гидрохлорирование в растворе, наиболее широко применяемое на практике, обычно осуществляется пропусканием безводного хлористого водорода через 3—6%-ный раствор полиизопрена [118—120]. С целью улучшения растворимости каучука и увеличения выхода готового продукта каучук подвергают предварительной термопластикации, которая позволяет увеличить концент - 10 ЗО 50 7О
Продолжительность реакции, мин
Рис. 1.3. Влияние температуры на скорость гидрохлорирования СК. И-3 в 1,2-ди- хлорэтане (концентрация каучука 2 г/100 см3 растворителя; барботаж хлористого водорода в раствор каучука; скорость подачи хлористого водорода 42-Ю-7 м3/с):
1 — 40 °С; 2 — 30 °С; 3 — 20 °С и 4 — 0 °С.
Рацию раствора до 10%. Температура реакции колеблется от —35 до 20 °С [118, 121]. Гидрохлорированный каучук обычно осаждают спиртом или горячей водой. Для уменьшения в конечном продукте содержания влаги до 0,1%, ухудшающей качество пленочного материала, разработан новый, двухступенчатый способ сушки гидро- хлорированного каучука с использованием активных гидродинамических режимов сушки, включающих удаление влаги из материала во взвешенном состоянии и дополнительную сушку — кондиционирование в установке кипящего слоя с направленным потоком движения материала [122]. Описаны способы гидрохлорирования суспендированного [123], исходного или слегка набухшего каучука [124]. Весьма перспективным является способ гидрохлорирования в латексе [77]. Условия проведения процесса не зависят от молекулярной массы исходного каучука, а гидрохлорированный каучук, получаемый в латексе, отличается высокой чистотой, так как отмывка тонкодисперсного порошка гидрохлорированного каучука осуществляется легко и качественно [125]. К. недостаткам способа следует отнести необходимость применения специальных стабилизаторов, предотвращающих коагуляцию латекса при введении в него хлористого водорода. Обычно гидрохлорирование латекса проводят в присутствии катионных или неионогенных эмульгаторов [126—130].
Несмотря на промежуточное образование карбкатиона, степень циклизации в процессе гидрохлорирования, судя по данным ЯМР высокого разрешения [131], невелика.
Скорость присоединения хлористого водорода и степень насыщения двойных связей г^ыс-1,4-бутадиенового каучука меньше, чем г^ис-ІД-изопренового [77]. Присоединение хлора происходит к третичному углеродному атому 1,2-звеньев. Для интенсификации процесса при гидрохлорировании 1,4-г{мс-полибутадиена рекомендуется использовать катализаторы: 0,001—0,1 моль/л галогенидов металлов (SnCl4, TiCl4, МоС15, FeCl3) [132]. Реакцию проводят пропусканием НС1 через раствор полибутадиена в ароматическом растворителе (бензоле, толуоле, ксилоле) при температуре от —50 до 80 °С.
Реакция гидрохлорирования сополимеров бутадиена и стирола протекает чрезвычайно медленно [77, 133]. Использование катализаторов Фриделя — Крафтса (А1С13, SnCl4) облегчает присоединение хлористого водорода к двойным связям сополимеров, однако во всех случаях выходы продуктов гидрохлорирования невелики [133].