ТЕОРИЯ сварочных процессов

Плавление основного металла

ФОРМЫ СВАРОЧНОЙ ВАННЫ ПРИ РАЗЛИЧНЫХ СПОСОБАХ СВАРКИ

Плавление основного металла при сварке осуществляется с целью соединения между собой свариваемых деталей. Идеальным в отношении затрат теплоты представляется такое тепловыде­ление в источнике, при котором обеспечивалась бы минимальная глубина проплавления сопрягаемых поверхностей, а присадочный металл не требовался бы вовсе или входил в соединение в мини­мальном объеме. Если не рассматривать диффузионную сварку и пайку, при которых детали нагреваются полностью, и сварку трением, при которой полного плавления металла не достигается, наиболее близко этому требованию отвечает высокочастотная сварка и некоторые виды контактной сварки (точечная, шовная, рельефная). В перечисленных способах сварки существенная роль в образовании соединения принадлежит давлению, что позволяет плавить основной металл незначительно. Ограничимся рассмотрением случаев плавления основного металла в способах сварки без применения давления.

При электронно-лучевой сварке удается получить минималь­ное проплавление основного металла при сварке встык вплоть до толщин, измеряемых сотнями миллиметров. Сварочная ванна в поперечном сечении имеет форму, близкую к конусу (см. рис. 5.14, д), а в плоскостях, перпендикулярных лучу, — близкую к эллипсу.

При электрошлаковой сварке также можно получить мини­мальное проплавление основного металла (см. рис. 5.14, в), но для ведения шлакового процесса с целью получения достаточного выделения теплоты необходим зазор, который затем должен заполняться присадочным металлом. Сварочная ванна может быть мелкой или глубокой в зависимости от скорости сварки
и мощности источника. Форма ванны при электрошлаковой свар­ке зависит от соотношения между количествами теплоты, посту­пающими в основной металл непосредственно от шлака и от опускающегося в металлическую ванну перегретого электродного металла.

При использовании дуговых, плазменных и газопламенных источников теплоты при сварке встык металла небольшой толщи­ны форма ванны близка к форме изотермической линии темпера­туры плавления, рассчитанной для движущегося линейного ис­точника теплоты в пластине. С ростом толщины металла разница в размерах ванны на верхней и нижней поверхностях листа становится все более значительной, а при некоторой толщине полное проплавление уже не достигается, как показано на рис. 7.19. Для увеличения проплавляющей возможности указан­ных источников используют разделку кромок. Особенности раз­личных источников нагрева в части их проплавляющей способ-

Плавление основного металла

«а

Рис. 7.19 Формы сварочной ванны при дуговой сварке: а — поверхностная дуга; 6 — погруженная дуга; в — дуга под флюсом

Fu

Ш

а;'

Плавление основного металла

Плавление основного металла

Плавление основного металла

В

ности обычно оценивают экспериментальным путем, расплавляя поверхность массивного тела или толстой пластины (рис. 7.19).

Ванну характеризуют следующими параметрами: L — длина ванны, В — ее ширина, Н — глубина проплавлення, Нк — глу­бина кратера. Очертание зоны проплавления характеризуют относительной глубиной проплавления Н/В или обратной ей величиной — коэффициентом формы проплавления Ф =В/Н, а также коэффициентом полноты проплавления ц„р= гп?/{НВ), где Fa? — площадь проплавления. Значения р обычно находятся в пределах 0,6...0,8. Для дуговой сварки под флюсом характерно большое Н/В, но при дуговых способах сварки оно все же не превышает 3. Очертание зоны наплавки характеризуют коэффи­циент формы валика А>в = В/А, а также коэффициент полноты валика iB = FJ(AB), где А — высота шва, FH—площадь на­плавки.

L =

Расчеты позволяют лишь приближенно оценить размеры ван­ны при дуговых способах сварки. При наплавке на поверхность массивного тела длину ванны L можно получить из уравнения (6.42), приняв г = 0, а АТ=ТП, — ТН и использовав при этом соотношение tu=L:

2лк(Тш-Т„) ' (7-44)

Формула (7.44) показывает, что длина ванны на поверхности массивного тела от скорости сварки не зависит. Опытные данные в целом указывают на справедливость этой формулы, хотя и обнаруживают некоторую зависимость длины ванны от скорости. Аналогично можно оценить и ширину ванны.

При заполнении разделки в случае многослойной сварки форма ванны имеет меньшее значение. Более существенно пол­ное сплавление наплавляемого металла с ранее уложенными слоями и отсутствие шлаковых включений.

Форма и размеры ванны при прочих равных условиях (мощности источника и скорости сварки) существенно зависят от характера подачи и температуры присадочного металла. При подаче в ванну холодной непрерывной или рубленной на мелкие части проволоки ванна становится короче. Поэтому оценка L по формуле (7.44) справедлива лишь для идеализированных ус­ловий.

ТЕМПЕРАТУРА СВАРОЧНОЙ ВАННЫ

Температуры жидкого металла в различных точках сварочной ванны могут сильно различаться между собой. У границы с твердым металлом температура жидкого металла близка к темпе­ратуре его плавления (табл. 7.2). Она может быть как несколько ниже Тпл вследствие кристаллизационного переохлаждения, так и выше при больших скоростях движения жидкого металла вдоль твердой границы. Как следует из рис. 7.19, расплавляю-

Таблица 7.2. Температуры плавления и кипения различных металлов, К, при атмосферном давлении

Металл

Температура плавления

Температура кипения

Магний

923 ±0,5

1323 ±5

Алюминий

933+1

2590 + 50

Медь

1356±3

2630 ±30

Железо

1803 + 5

3320 + 50

Гитан

1998± 10

3770+100

Ниобий

2730

4000

Молибден

2895 + 25

5000 ±200

Вольфрам

3660 + 60

6200 + 200

щийся на передней кромке ванны жидкий металл поступает в ее заднюю часть, проходя вдоль боковых поверхностей и дна ванны. При этом скорости движения металла могут превышать скорость сварки в 1,5...10 раз. Максимальные температуры жид­кого металла существенно зависят от источника теплоты. При лучевых способах сварки, особенно при значительной концентра­ции энергии в пятне нагрева, металл может достигать температу­ры кипения (см. табл. 7.2).

Дуговые и плазменные источники энергии также способны создавать на поверхности металла довольно высокие температу­ры, например у сталей до 2300 К. При электрошлаковом про­цессе температура жидкого присадочного металла, проходящего через активную зону шлаковой ванны, где выделяется теплота, достигает температуры шлака, которая в средней по высоте части шлаковой ванны составляет 2100...2200 К, а на поверхно­сти шлака около 2000 К-

При способах сварки плавлением, особенно с использованием дуги, происходит интенсивное перемешивание жидкого металла как вследствие его движения из передней части ванны в заднюю, так и под влиянием других воздействий источника теплоты на жидкий металл. Происходит интенсивный теплообмен между отдельными порциями различно нагретого жидкого металла, а также вследствие теплоотвода в твердый металл. По этой причине энергетическое состояние ванны целесообразно характе­ризовать не только возможными максимальными и минимальны­ми температурами, но и средней температурой жидкого металла. Она зависит от режима сварки (тока, напряжения, скорости сварки), характера подачи присадочного металла, устойчивости дуги и положения ее активного пятна. Например, средняя температура ванны при аргонно-дуговой сварке алюминиевого сплава АМгб может изменяться от 920 до 1050 К при возраста­нии тока от 300 до 450 А при (/д= 14 В и от 1070 до 1200 К при 1/д= 8 В, в то время как температура плавления сплава АМгб составляет около 890 К.

Во многих случаях, в особенности при сварке легированных сталей и различных сплавов, требуется прежде всего получение определенных механических свойств и структуры металла около­шовной зоны и шва, которые зависят от длительности пребыва­ния металла выше определенной температуры, скорости охлаж­дения в необходимом интервале температур, повторного нагрева и многих других особенностей термического цикла сварки (см. разд. IV). Поэтому оценка эффективности процесса сварки по энергетическим критериям часто оказывается второстепенной. Однако для сталей, мало чувствительных к воздействию терми­ческого цикла сварки, оценка эффективности различных режимов сварки по энергетическим затратам необходима. Следует разли­чать сварные соединения двух основных крайних типов: соедине­ния, в которых преобладает наплавленный металл (заштрихо­ванные участки на рис. 7.20, вверху), и соединения, образуемые преимущественно в результате расплавления основного металла (рис. 7.20, внизу). Для последнего типа соединений, например

стыкового, тепловую эффективность процесса целесообразно ха­

рактеризовать удельной затратой количества теплоты на единицу площади свариваемой поверхности:

г— UI/F СВ), (7.45)

где Ссв1 — площадь соединения, свариваемая за 1 с; для одно­проходной сварки встык, например Ссв| = иб; UI—полная теп­ловая мощность сварочного источника.

Эффективность использования тепловой энергии движущихся источников теплоты характеризуют также так называемым тер­мическим к. п. д. процесса проплавления основного металла:

4t=vFupphaJq. (7.46)

Коэффициент т)/ выражает отношение условного теплосодер­жания vFn;phn„ проплавленного за единицу времени основного металла к эффективной тепловой мощности источника теплоты. Величина теплосодержания в единице массы металла /гпл включа­ет в себя также скрытую теплоту плавления, затрачиваемую на

Плавление основного металла

ут

-4А

С присадкой

без присадки

Рис. 7.20. Поперечные сечения сварных соединений (штриховыми линиями пока­заны границы расплавления)

переход металла из твердого в жидкое состояние. Здесь принято, что лишь теплота, истраченная на плавление металла, израсхо­дована полезно, а остальная часть, ушедшая на подогрев метал­ла, окружающего ванну, истрачена бесполезно. Расчетное опре­деление тр для точечного и линейного источников теплоты соот­ветственно в полубесконечном массивном теле и в пластине про­водят по формулам (6.22) и (6.26). По ним определяют площадь F„р в выражении (7.46), ограниченную изотермой ДТ =Т„А — Тп. Для точечного источника т]( возрастает с ростом безразмерного критерия ез —qv/(a2phm), т. е. термический к. п. д. выше у мощ­ных дуг, движущихся с высокой скоростью. Однако при вз —оо не может быть выше 1/0 = 0,368.

Соответственно для линейного источника теплоты в пластине т], возрастает с ростом безразмерного критерия е2= q/(8aphnJ, но не может быть более У2/(ле) = 0,484 в случае предельно мощных линейных источников теплоты, т. е. при q/8-voo.

Полный тепловой к. п. д. проплавления т)пр выражает отно­шение vFBpph„„ ко всей (полной) тепловой мощности сварочного источника теплоты VI. Источники теплоты, когда они использу­ются для соединений, формирование которых происходит в ос­новном в результате наплавки металла (см. рис. 7.20, вверху), целесообразно оценивать по полному тепловому к. п. д. наплавки

4H=vFuph„J{UI), (7.47)

где F„ — площадь наплавки.

ТЕОРИЯ сварочных процессов

Граничные условия

Чтобы решить дифференциальное уравнение теплопроводно­сти, необходимо задать распределение температур в начальный момент времени (начальное условие) и условия взаимодействия тела с окружающей средой на его границах (граничные условия). Начальное условие определяется …

Основные допущения и упрощения, принятые в классической теории распространения теплоты при сварке

На современном уровне развития математики аналитическое решение уравнения теплопроводности в общем виде (5.21) еще не найдено, однако при введении некоторых допущений и упрощений можно получить пригодные для практического использования ча­стные …

Дифференциальное уравнение теплопроводности

Сложный процесс изменения температуры точек тела с коор­динатами jc, у, z во времени t описывается дифференциальным уравнением теплопроводности. Для вывода этого уравнения необ­ходимо рассмотреть баланс теплоты в некотором элементарном объеме …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.