Утверждение закона сохранения энергии. Революция в понятиях и терминах
В предисловии к английскому изданию «Капитала» Ф. Энгельс писал: «В науке каждая новая точка зрения влечет за собой революцию в ее технических терминах» [1.4].
Естественно, что такое событие, как установление радикально новой точки зрения на энергетические превращения, не могло не вызвать и революцию в терминах. Но дело было настолько серьезным, что не могло ограничиться только терминами; упорядочению терминов должно было предшествовать упорядочение понятий. Об этом хорошо в свое время сказал А. Лавуазье, считавший, что каждая наука состоит из ряда фактов, представлений о них (т. е. понятий) и слов, их выражающих (т. е. терминов). Действительно, даже в работах Г. Гельмгольца, не говоря уже о Майере и Джоуле, отсутствовали такие привычные для нас термины, как «энергия» и «работа»; понятия «сила» и «теплота» использовались совсем не в том смысле, который соответствует их однозначной научной трактовке.
В начальной стадии формирования нового закона некоторая расплывчатость в понятиях и терминах вполне естественна; но по мере расширения сферы его применения любая нечеткость в них становится тормозящим фактором. Без ее устранения закон сохранения энергии не мог бы стать всеобщим достоянием и исправно «работать» во всех областях науки и техники.
Усиленное внимание, которое уделяется в науке правильной и четкой терминологии, может вызвать недоумение. Многие, в том числе весьма образованные люди, считают излишней скрупулезностью «вылизывание и шлифовку» терминов, рассуждая примерно так: «Какая в конце концов разница, как назвать ту или другую вещь или понятие. Каждый, кто имеет с ними дело, знает, что это такое. Не зря мудрая народная пословица говорит: «Хоть горшком назови, только в печь не ставь». Важно дело, а не слова».
Такая «философия» даже применительно к обыденной жизни может привести к неприятностям, не говоря уже о науке. Дальше мы увидим на конкретных примерах, относящихся к ррш, к каким последствиям может привести неточная трактовка некоторых энергетических терминов, в частности терминов «теплота», КПД (коэффициент полезного действия), «окружающая среда», «замкнутая система» и других. Поэтому в дальнейшем мы будем очень внимательно относиться к терминам, выделяя там, где необходимо, место для их подробного разбора.
Применительно к закону, установленному С. Карно, Р. Майером и Д. Джоулем, необходимо остановиться на двух основополагающих понятиях, связанных с терминами «энергия» и «теплота» (или «тепло»), а также несколько расширить представление о понятии, относящемся к термину «работа». Без этого дальнейший разбор вопроса о вечном двигателе достаточно полно провести нельзя.
Начнем с понятия «энергия». Впервые оно появилось еще у Аристотеля как обозначение некоего деятельного начала; но оно имело тогда чисто философское значение и никакие количественные оценки здесь не предполагались.
Ввел этот термин в физику и придал ему точный смысл английский механик Т. Юнг (1773-1829 гг.) в «Лекциях по естественной философии» (1807 г.). Это было сделано им применительно к «живой силе» (произведению массы тела на квадрат его скорости), т. е. только к механическому движению; но первый шаг к широкому использованию термина состоялся.
В дальнейшем, после работ основоположников закона сохранения, общий термин «энергия» стал постепенно вытеснять в литературе все другие как единственный для обозначения общей меры движения материи. Особенно большую роль тут сыграли уже упоминавшиеся У. Ренкин и У. Томсон-Кельвин.
Соответственно все законы сохранения движения, независимо от того, в какой форме они проявлялись — механической, тепловой, электромагнитной, химической или биологической, стали частными случаями общего фундаментального закона природы — закона сохранения энергии.
После этого уточнились и приобрели однозначный смысл понятия «работа» и «теплота» («тепло»). Если термин «работа», как мы уже говорили, сравнительно быстро приобрел четкий смысл[13], то термин «теплота» долго сохранял остатки влияния теории «теплорода». Живучесть этого влияния (как и многих других старых представлений) оказалась просто необычайной. До сих пор сохранились такие термины, перешедшие из XVIII в., как «теплоемкость», «теплопередача», «тепловой резервуар», «тепловой аккумулятор»; совсем недавно еще употреблялся термин «теплосодержание», замененный на «энтальпию». Все они связаны с теплотой, как с чем-то содержащимся в теле, т. е. по существу с «теплородом». Замена теории теплорода на «механическую теорию тепла» не изменила вначале этой терминологии. Энергию хаотического движения молекул тела, связанную с его температурой, по инерции продолжали называть теплотой, хотя это нечто совсем иное — часть внутренней энергии тела.
Чтобы исключить ошибки при анализе энергетических преобразований, нужно совершенно четко представлять разницу между внутренней энергией, содержащейся в каком - либо теле, и энергией, подводимой к нему (или отводимой от него). Энергия второго вида существует только тогда, когда передается от одного тела к другому. Передача энергии может происходить в двух формах: теплоты и работы. Таким образом, общность теплоты и работы определяется тем, что они представляют собой количественную меру передаваемой энергии. Но между ними есть и существенная разница. Работа — это передача энергии в организованной форме, при которой каждая частица совершает движение (если не считать колебаний) по определенной траектории[14]. Если, например, происходит передача механической энергии посредством пары зубчатых колес, то каждая молекула как ведущей, так и ведомой шестерни совершает движение, связанное с этой системой, строго по окружностям. Если с помощью ворота поднимается груз, то все его частицы двигаются по прямым, и т. д.
Напротив, передача энергии в форме теплоты совершается хаотическим движением частиц. При контакте двух тел с разными температурами молекулы тела, имеющего более высокую температуру, «раскачивают» молекулы более холодного тела так, что средняя скорость первых уменьшается, а вторых увеличивается. В результате определенное количество энергии передается от первого тела ко второму.
Таким образом, и теплота, и работа — это энергия в передаче, в переходе. Если процесса перехода нет — нет ни теплоты, ни работы. Они существуют только в процессе передачи от одного тела к другому, но не могут «содержаться» в них. То, что теплота переходит от одного тела к другому, вовсе не означает, что она сначала содержалась в одном, а потом стала содержаться в другом теле. Просто внутренняя энергия тела, к которому была подведена теплота, выросла, а того, от которого теплота была отведена, соответственно снизилась. Превращение работы в теплоту означает, следовательно, что система, получившая энергию в форме работы от какого-либо тела, превращает его сначала во внутреннюю энергию, а затем отдает ее другому телу в форме теплоты. Так, затрачивая механическую работу на вращение мешалки, погруженной в жидкость, мы увеличиваем внутреннюю энергию этой жидкости: она нагревается, так как получает энергию в форме работы. Затем, давая жидкости охладиться до прежней температуры, мы можем отвести эту энергию в форме теплоты.
Примерно таким образом граф Румфорд в 1799 г. проводил свой знаменитый опыт, показывающий превращение работы в теплоту при сверлении пушек. Энергия, подводимая в форме механической работы вращения сверла, отводилась водой, которая при этом нагревалась от температуры Ті до температуры Т2 (Т2 > Ті). Внутренняя энергия воды (обозначим ее U) возрастала при этом от U до U2- Затем вода остывала снова до температуры Ті, отдавая энергию в форме теплоты Q окружающей среде. Если охладить воду до прежней температуры, то ее внутренняя энергия остается такой же, как и вначале; количества теплоты Q и работы L будут равны. Если же охладить воду до какой-либо промежуточной температуры Т3, более высокой, чем Ті, то количество отводимой теплоты будет меньше, так как часть подведенной энергии остается в виде прироста AU внутренней энергии воды.
Таким образом, закон сохранения энергии будет выражаться классической формулой, связывающей теплоту и работу:
L = Q + AU. (2.1)
Затраченная работа может как идти на увеличение внутренней энергии тела АС/, так и отводиться в виде теплоты Q. Если АС/ = 0, то Q = L. Формула (2.1) и выражала закон сохранения энергии в его наиболее простой форме. Возникла и наука, которая специально рассматривала взаимные превращения теплоты и работы, — термодинамика[15].
Термодинамика в начале своего развития рассматривалась только как наука о взаимных превращениях теплоты и работы[16]. По мере дальнейшего развития, она постепенно охватывала и другие энергетические превращения, связанные с электрическими, магнитными, химическими, а также квантовыми явлениями. Соответственно расширялись и понятия работы L и внутренней энергии С/. Таким образом, сфера действия первого закона термодинамики охватила по существу все области энергетических превращений и стала соответствовать по своему содержанию закону сохранения энергии.
Поэтому в дальнейшем мы будем использовать термин «первый закон термодинамики» как синоним термина «закон сохранения энергии». Так будет удобнее в дальнейшем при рассмотрении второго закона термодинамики и сопоставлении его с первым.
Изложим коротко некоторые формулировки и положения, связанные с первым законом термодинамики, которые понадобятся в дальнейшем при анализе новых ррт.
Существует целый ряд одинаково правильных формулировок первого закона термодинамики. Нам важно выбрать из них такую, которая в наибольшей степени была бы удобна для разоблачения ppm-1. С этой точки зрения, казалось бы, наиболее подходит самая близкая к нашей теме: «Вечный двигатель первого рода невозможен». Однако при всей четкости и категоричности такой формулировки она не говорит о том, как определить, что то или иное устройство именно и есть вечный двигатель. Ведь прежде, чем запретить, нужно знать что запретить!
Вход |
Выход I і |
А) Q' |
І— Л V |
Двигатель |
W |
Q" |
, Н' |
Аи = О
I--
Выход Рис. 2.5. Энергетический баланс системы: а — реальный двигатель; б — ррш-1 |
Вход |
Б) |
Поэтому более удобна другая формулировка: «При любых превращениях в системе[17] входящий в нее поток энергии всегда равен выходящему». Об этом хорошо сказано в «Фейнмановских лекциях по физике»: «...можно взять какое-то число и спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число — и оно останется прежним». Здесь «число» — это значение энергии. Дня того чтобы определить, существует такое равенство или нет[18], нужно составить энергетический баланс — подсчитать все потоки входящей энергии (обозначим их знаком ' — вход) и выходящей (обозначим их знаком " — выход). Чтобы не ошибиться и не пропустить какой-нибудь из них, окружим наш двигатель воображаемой оболочкой — контрольной поверхностью (она показана на рис. 2.5, штриховой линией). Потоки энергии обозначены стрелками. На входе в общем случае это может быть поток теплоты Q' и поток энергии, которую вносит входящее вещество (например, пар, вода, топливо и т. д.). Энергия в потоке вещества обозначается буквой Н. На выходе нужно учесть
выходящую теплоту Q", поток энергии, выносимый отработавшим веществом Я", и, наконец, работу L". Первый закон утверждает, что входящая энергия W' т. е. сумма Q' + Нг, обязательно должна быть равна выходящей W", т. е. сумме Q" + Н" + L" (если, конечно, внутри двигателя энергия не накапливается и не расходуется, AU = 0):
W' = Q' + Я' = Q" + Я" + L" = ИЛ (2.2)
Поскольку по первому закону все виды энергии эквивалентны, легко подсчитать значения каждой из этих величин в одних и тех же единицах (калориях, джоулях или киловатт-часах).
Из уравнения (2.2) следует, что отводимая работа в точности равна сумме изменений энергии рабочего тела и теплоты:
L" = (Q' -<Э") + (Я' - Я"). (2.3)
Подсчитав их, мы найдем работу двигателя, равную L".
Из первого закона термодинамики следует, что получаемая работа не может быть ни меньше, ни больше L".
Первый случай (W' > W") нас здесь не интересует, хотя он — тоже нарушение закона сохранения (энергия исчезает), но второй (энергия берется «ниоткуда») как раз и соответствует ррт-1. Такое устройство существовать не может.
Мы взяли для анализа общий, сложный случай — с теплотой и потоком вещества (в дальнейшем он понадобится тоже). Однако все рассмотренные в гл. 1 двигатели проще — они не связаны ни с тем, ни с другим1. Ддя них уравнения (2.2) или (2.3) будут выглядеть более просто, так как Q = 0 и Я = 0, а следовательно, и W' = 0. Тогда и
W" = L" = 0, (2.4)
И работа этих устройств должна быть равна нулю. Если же изобретатель утверждает, что L ф 0, то это будет только воображаемое, в реальности не могущее действовать устройство, противоречащее условию (2.4), т. е. ррт-1 (рис. 2.5, б).
Таким образом, первый закон термодинамики позволяет не вникать в детали устройства для того, чтобы определить — будет двигатель работать или нет. Нужно просто «заключить» его внутрь контрольной поверхности и подсчитать, сколько всего входит энергии (W') и сколько выходит (W"), и если выходит больше, чем входит (W" > W'), то дискуссия закончена. Налицо нарушение закона природы: получение энергии из ничего. Вечный двигатель первого рода невозможен.
Естественно, что все, о чем говорилось выше, относится к любой технической или биологической системе: выходящая за определенный отрезок времени энергия W" должна быть равна входящей W'. В каждую из них, разумеется, нужно включить все потоки энергии, независимо от их вида. Кроме того, в общем случае нужно учесть и накопление
(или расходование) внутренних запасов энергии A U:
W" = W' - AU. (2.5)
Сказанное можно пояснить простым примером. Возьмем такую биологическую систему, как медведь. Осенью он поглощает с пищей (Я' = W') большее количество энергии, чем расходует (с теплотой Q" и работой L"). Поэтому он накапливает с жировыми запасами энергию AU. Следовательно, осенью его энергетический баланс активный: Wo с = HqC > Woe — Кс + Qoc - Однако зимой, во время спячки в берлоге, он вообще не получает энергию извне (W' — 0); расход энергии включает работу L" = 0 (на дыхание, изменение позы и сосание лапы — он очень мал) и теплоту Q" = 0 для поддержания микроклимата в берлоге. Весь этот расход энергии W" = L" + Q" компенсируется уменьшением ее запасов AU. Следовательно, энергетический баланс для этого периода будет иметь вид 0 = W" + AU или Q" + L" = —AU. Чтобы он соблюдался, величина AU должна быть отрицательной: запас внутренней энергии будет уменьшаться.
Первое начало термодинамики представляет собой мощное средство как научного познания природы, так и создания «второй природы» — техники. Дня уже существующих систем оно позволяет проверить правильность любых теорий или результатов экспериментов, связанных с энергетикой. Если баланс по теории или по измерениям не сходится, значит, где-то допущена ошибка. Дня вновь изобретенных систем проверка их энергетического баланса обязательна. Если W' ф AU + W", то система существовать не может. При W' > AU + W" энергия в ней «уничтожается», а при W' < AU + W" — «возникает» из ничего (ррш-1). Первый закон показывает, что все это абсолютно невозможно, или, как иногда говорят, запрещено.
Казалось бы, полное и безоговорочное утверждение закона сохранения энергии и его все более широкая популяризация должны были привести к сокращению потока вновь изобретаемых ррт-1. К тому же «его величество пар» снял на долгое время проблему универсального двигателя. Однако существенного влияния на большинство изобретателей ррт-1 все это до конца первой четверти XX в. не оказало. Штурм неразрешимой задачи продолжался.