 Using gret l for Principles of Econometrics, 4th Edition

# Residual Plots

Inadvertently choosing an inappropriate functional form can lead to some serious problems when it comes to using your results for decision-making. There are a number of formal tests that one can do to diagnose problems of specification, but researchers often start by looking at residual plots to get a quick idea if there are any problems.

If the assumptions of the classical normal linear regression model hold (ensuring that least squares is minimum variance unbiased) then residuals should look like those found in ch4sim1.gdt shown in Figure 4.9 below.

open "@gretldirdatapoech4sim1.gdt" gnuplot e x Figure 4.9: Random residuals from ch4sim1.gdt

If there is no apparent pattern, then chances are the assumptions required for the Gauss-Markov theorem to hold may be satisfied and the least squares estimator will be efficient among linear estimators and have the usual desirable properties.

The next plot is of the least squares residuals from the linear-log food expenditure model (Figure 4.10). These do not appear to be strictly random. Rather, they are heteroskedastic, which means that for some levels of income, food expenditure varies more than for others (more variance for high incomes). Least squares may be unbiased in this case, but it is not efficient. The validity of hypothesis tests and intervals is affected and some care must be taken to ensure proper statistical inferences are made. This is discussed at more length in chapter 8.

Finally, the ch4sim2.gdt dataset contains least squares residuals from a linear regression fit to quadratic data. To treat the relationship as linear would be like trying to fit a line through a parabola! This appears in Figure 4.11. The script to generate this is:

1 open "@gretldirdatapoech4sim2.gdt"

2 ols y const x

3 series ehat = \$uhat

4 gnuplot ehat x

Notice that another accessor has been used to store the residuals into a new variable. The residuals from the preceding regression are stored and can be accessed via \$uhat. In line 3 these were accessed and assigned to the variable ehat. Then, they can be plotted using gnuplot.

Looking at the plot in Figure 4.11, there is an obvious problem with model specification. The errors are supposed to look like a random scatter around zero. There are clearly parabolic and the model is NOT correctly specified.

Добавить комментарий

## Using gret l for Principles of Econometrics, 4th Edition

### Simulation

In appendix 10F of POE4, the authors conduct a Monte Carlo experiment comparing the performance of OLS and TSLS. The basic simulation is based on the model y = x …

### Hausman Test

The Hausman test probes the consistency of the random effects estimator. The null hypothesis is that these estimates are consistent-that is, that the requirement of orthogonality of the model’s errors …

### Time-Varying Volatility and ARCH Models: Introduction to Financial Econometrics

In this chapter we’ll estimate several models in which the variance of the dependent variable changes over time. These are broadly referred to as ARCH (autoregressive conditional heteroskedas - ticity) …

## Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

## Контакты для заказов шлакоблочного оборудования:

+38 096 992 9559 Инна (вайбер, вацап, телеграм)
Эл. почта: inna@msd.com.ua

За услуги или товары возможен прием платежей Онпай: Платежи ОнПай