The Technique of FURNITURE MAKING

Simple dining-chair

The illustrations in 468 show the construction of this type of chair. Figure 468:1 is the side elevation; 468:2 the seat plan; 468:3 the angle of the rail joints taken from the full-size drawing. and 468:4 the heavy corner blocks which are glued and screwed into each corner of the seat frame to increase the overall rigidity of the chair. Figure 468:5 is an exploded diagram of the construction, with the front rail kept down flush with the rebates/rabbets in the side rails, with a supporting fillet screwed to the back rail for the plywood base of the seat. This plywood base should be bored to allow the air to escape from the foam-rubber seating, especially if impervious top coverings (leather, plastic cloth, etc.) are used. Figures 468:6. 7 are alternative mortise and tenon joints for front and back posts. The padded back is screwed to the back posts from the inside, and the top cover carried over to hide the framing, or alternatively 6 in (152 mm)-taper dovetail slide connectors can be obtained in which the female part is screwed to the back post, and the male part screwed to the back rest slid down into position after the upholstery is completed. Chairs of this description can have webbed and upholstered drop-in seats as shown later in this chapter, in which case the front rail is flush with the side

rails and the 5/8 in (16 mm) rebate continued round to receive the seat frame. Figure 496, for example, shows a typical seat frame for webbing which can either be dowelled, or half lapped and screwed. Suitable dimensions for average seat frames can be 2 in (51 mm) or 2 1/2 in (63.5 mm) wide stuff, 5/8 in (16 mm) or 3/4 in (19 mm) thick, and are usually made of beech, which will take closely spaced tacks without splitting. There is usually a rebate in the chair rails, allowing about 1/8 in (3 mm) clearance all round for the thickness of the covering materials.

Turned rush-seated chair

Traditional examples of this type of chair often used coppice ash for the back posts, which merely required soaking in hot water to enable the bend to be formed. It is usual to turn first and then bend, although there is always some danger of crushing the rounded surface of the wood if the bend is acute. Modern examples of these chairs are often stained with clear penetrating dyes which do not choke or disguise the grain of the wood, but to avoid uneven coloration the whole chair should be dipped.

The chairs by John Makepeace and Rupert Williamson illustrated on the following pages show clearly the work of the modern artist- craftsman. All four pieces are extremely complex feats of woodworking skill and are designed to be made without compromise. Production would be near impossible by machine production methods.

The pieces by John Makepeace are achieved partly by the careful laminating of thin strips cut from the same piece of timber, then numbered, so that when reassembled in the mould the joints are nearly invisible to the naked eye. Rupert Williamson employs more traditional forms of construction, but the skill and patience of the hand craftsman are clearly seen in these highly intricate backs.

In contrast, 476-478 show the work of crafts­men when they are not designing for a unique situation but for relatively inexpensive batch production. These chairs could possibly be mass-produced, but the fact is that they are not; they are all made to a very high standard within each craftsman's workshop.

471 Turned rush-seated chair

472 John Makepeace: chair in solid and laminated ebony with woven nickel seat and back

473 John Makepeace: part of a special commission in oak for dining table and chairs designed to reflect the surrounding woodland as seen from the dining room

474 & 475 Rupert Williamson: dining chairs in sycamore with inlay and edging of rosewood

Richard La Trobe Bateman's chair (476) is ideally suitable for this form of workshop production, relying as it does on simple square - edged wood and machined joints. However, being a craftsman, he is not content with that, so the seat is carefully contoured to the body and those two harsh-looking back planks spring to provide unexpected comfort.

476 Richard La Trobe Bateman: dining chair in brown oak

David Colwell (p. 468) uses steam bending and turning and low technology to produce his visually simple and appealing chairs which are made in considerable quantities for retail distribution.

Lucinda Leech's chaise longue and armchair, designed for garden, patio or conservatory, use a combination of simple square framed joinery and laminated construction so straightforward and cleverly designed that only one mould is used for each piece. For clarity, both pieces are illustrated here without the cushions designed to go with them (479 and 480).

Добавить комментарий

The Technique of FURNITURE MAKING

ESTIMATING THE COST OF MAN-HOURS IN HANDWORK

Where no previous records are available the proprietor must assess his own capabilities and those of his employees. Common joinery items are usually in softwood of fairly large dimensions, with …

Costs of man-hours

The total cost of man-hours at the rates paid, plus overtime rates where applicable, plus health insurance, pensions, paid holidays, etc. have to be considered. Here again these may be …

Appendix: Costing and estimating

Costing is the pricing of completed work taking into account not only all the direct expenses— materials, wages and insurances, fuel and power, machining costs, workshop expenses, etc.—but also a …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.