ТЕХНОЛОГИЯ ПЛАСТМАСС НА ОСНОВЕ ПОЛИАМИДОВ
Морфология полиамидов
Рентгеноструктурный анализ линейных гомополи - амидов в твердом состоянии, например ПА 6 и 66, показывает, что они представляют собой частично кристаллические материалы. Степень кристалличности никогда не достигает 100%, обычно она ниже 50%. Размер кристаллитов в полиамидах очень мал и редко превышает 200 А, тогда как длина отдельной макромолекулы полиамида достигает 1000 А.
Кристалличность полиамидов, как и других полимеров, повышается, если молекулы характеризуются высокой степенью пространственной регулярности в расположении функциональных групп (стереорегу - лярность), небольшим объемом таких групп и возможностью возникновения межмолекулярных взаимодействий, способствующих плотной упаковке макромолекул.
При охлаждении расплава, в котором макромолекулы полностью разориентированы, в результате теплового движения сегментов и взаимодействия между функциональными группами соседних макромолекул возникает правильное расположение цепей с образованием кристаллического порядка. При этом другие сегменты той же самой молекулярной цепи могут находиться за пределами кристаллических областей. Таким образом, отдельная макромолекула одновременно может входить как в кристаллические образования, так и в аморфные области. Такие рассуждения служат основой модели «бахромчатой мицеллы», схематически представленной на рис. 3.2.
При кристаллизации из расплава в отсутствие течения, когда на этот процесс не накладывается влия-
Рис. 3.2. Схематическое изображение модели «бахромчатой мицеллы».
Ние внешних силовых полей, образующиеся кристаллиты характеризуются случайным расположением в пространстве. Кристаллиты, образующиеся в процессах литья и экструзии, анизотропны вследствие преимущественной ориентации цепей по направлению течения.
Силы межмолекулярного взаимодействия, действующие при кристаллизации полиамидов, главным образом обусловлены образованием водородных связей (рис. 3.3):
Полиамив 6S |
Полиамид б |
HN |
Стереорегулярность и образование водородных связей обычно считают основными особенностями строения полиамидов.
Водородные связи в полиамидах не локализуются только в кристаллических областях полимера. ИК- спектры медленно охлажденных полиамидов свидетельствуют о наличии небольшого числа несвязанных амидных групп. Быстрое охлаждение расплава, осу
ществляемое в реальных технологических процессах, приводит к повышению доли аморфной составляющей в полиамидах и увеличению содержания несвязанных амидных групп.
В то время как результаты рентгеноструктурного анализа, говорящие о сосуществовании в полиамидах аморфных и кристаллических областей, удовлетворительно объясняются моделью «бахромчатой мицеллы», данные оптической поляризационной микроскопии свидетельствуют о наличии упорядоченных образований, значительно превышающих по размерам кристаллиты. Такие образования называют сферолитами. Они хорошо видны в поляризационном микроскопе как двулучепреломляющие области с характерным мальтийским крестом, как это показано на рис. 3.3. Сферолиты в полиамидах являются полностью кристаллическими образованиями, а часть полимера, не входящая в сферолиты, составляет аморфную прослойку. Сферолиты обычно образуются из первичных зародышей (роль которых могут выполнять гетерогенные частицы), но они могут возникать и самопроизвольно. Электронномикроскопические исследования показывают, что сферолиты обладают ламелярной структурой и их кристаллизация протекает по механизму роста ламелей.
Сферолиты делятся на «положительные» и «отрицательные» в соответствии с их оптическими свойствами, проявляющимися в поляризованном свете. В зависимости от строения полиамида и условий роста кристаллов в поляризационном микроскопе можно наблюдать структуры различного типа. Часто микро-
Рис. 3.3 Сферолиты в ПА 6. |
Рис. 3.4. Скорость роста сферолитов в ПА 66 при различных температурах. |
Скопические исследования проводят с целью обнаружения структурных дефектов, возникающих во время формования изделий, а наблюдаемые картины хорошо согласуются с особенностями механических свойств полимера. Например, число и размер сферолитов, формирующихся при охлаждении полиамидов из расплава, зависят от скорости охлаждения и числа зародышей, присутствующих или образующихся в процессе охлаждения. Так, при медленном охлаждении расплава, содержащего небольшое количество зародышей, возникает большое число крупных сферолитов большого размера. Прайс [3] показал, что радиальный размер сферолитов является линейной функцией времени. Это положение иллюстрируется данными рис. 3.4 [4], из которых следует, что скорость роста сферолитов не зависит от скорости диффузии.