Технология минеральных солей (удо­Брений, пестицидов, промышленных со­лей, окислов и кислот)

ФОСФАТЫ АММОНИЯ

Физико-химические свойства

Фосфатами аммония обычно называют соли ортофосфорной жислоты — моноаммонийфосфат NH4H2PO4, . диаммонийфосфат.(NH4)2HP04 и триаммонийфосфат (МН4)зР04. Наиболее устойчи­вым соединением является моноаммонийфосфат, при нагревании которого до 100—110° не наблюдается потерь аммиака. Диаммо­нийфосфат при 70° теряет аммиак и переходит в моно­аммонийфосфат:

(NH4)2 НР04 = NH4H2P04 + NH3

Триаммонийфосфат раз­лагается на воздухе уже при 30—40°.

Давление диссоциации при 100° над NH4H2PO4 рав­но практически нулю, над (NH4)2HP04 —5 мм рт. ст. И над (NH4)3P04 —643 мм рт. ст. При 125° давление NH3 над этими солями воз­растает соответственно до 0,05, 30 и 1177 мм рт. ст.

При 20° в 100 г воды растворяется: NH4H2PO4 40,3 г, (NH4)2HP04 71,0 г, (ЫН4)зР04 17,7 г. Раствори­мость в системе NH3— —Н3РО4—Н2О показана на рис. 37 1 239~244.

Значения рН 0,1 молярного раствора равны: для NH4H2PO4 — 4,4, для (NH4)2HP04 —8,0 и для (NH4)3Р04 — 9,4.

Моно - и диаммонийфосфаты малогигроскопичны. Гигроскопи­ческая точка NH4H2PO4 при 50° равна 88%, а при 15° —97%. При смешении моноаммонийфосфата с такими веществами, как

Ca(H2P04)2-H20, (NH4)2S04, NH4N03t NH4C1 и СО(NH2)2, полу­чаются удобрительные смеси, обладающие хорошими физическими свойствами, с низкой гигроскопичностью и не слеживающиеся при хранении245-246.

При смешении моноаммонийфосфата с Ca(N03)2 в присутствии небольших количеств воды протекает обменная реакция:

Са (N03)2 • 4н20 + 2Nh4H2P04 = 2Nh4N03 + са (н2р04)2 • н20 + ЗН20

Эта смесь обладает большой гигроскопичностью.

При смешении диаммонийфосфата и хлористого калия с суль­фатом аммония, суперфосфатом или с моноаммонийфосфатом полу­чаются смеси с хорошими физическими свойствами. При смешении с нитратом аммония или карбамидом полученная смесь при хране­нии во влажном воздухе плохо рассевается 239> 24?-249.

Система NH4NO3—NH4H2P04—Н20 представляет большой прак­тический интерес в связи с расширяющимся производством слож­ного удобрения типа нитроаммофоски. Совместная растворимость компонентов данной системы была исследована для 100—200° 250. В связи с целесообразностью извлечения NH3 из коксового газа растворами фосфатов аммония изучалось равновесие в системе H3P04—NH3—С02—H2S—Н20 251.

В системе NH4H2P04—NaNOg—Н20 в диапазоне температур 0— 110° кристаллизуются NH4H2P04, NaH2P04-2H20, NaN03, лед 252.

Все большее внимание уделяется изучению свойств и технологии полифосфатов аммония, получаемых аммонизацией суперфосфор­ной кислоты 253.

Полифосфаты аммония представляют собой смесь аммонийных солей орто-, пиро-, Триполи - и других полифосфорных кислот 254"259. Полифосфаты аммония являются стойкими соединениями и хорошо растворимыми в воде 260-261, что важно для использования их в ка­честве удобрений. Содержание питательных веществ в них колеб­лется в пределах: N — 13—22% и Р205 — 54—68%. О свойствах по­лифосфатов и стабильности кристаллических фаз в системе NH3— —Н4Р207—Н20 при 25° и в системе NH3—Н5РзО10—Н20 при 0 и 25° — СМ. 262-264 _

Применение

Из ортофосфатов аммония промышленностью производятся толь­ко моно - и диаммонийфосфат; триаммонийфосфат ввиду его нестой­кости не изготовляют. Производят также полифосфаты аммония.

Наиболее широкое применение как фосфаты аммония, так и по - Лифосфаты аммония нашли в сельском хозяйстве в качестве удоб­рения. Они содержат два основных питательных элемента — азот и фосфор — в водорастворимой форме. Фосфаты аммония приме­няют также в виде компонентов комплексных удобрений и для по­учения ЖИДКИХ удобрений 265-274..

Фосфаты аммония являются высококонцентрированным удобре Лием благодаря большому содержанию питательных веществ, именно - (в вес. %):

Р205 NHs

Моноаммонийфосфат NH4H2PO4........................................ 61,7 14,3

Диаммонийфосфат (NH4)2HP04................................................. 53,8 25,8

Пирофосфат аммоиия (NH4)2H2P2C>7 ............................... 67,0 16,0

» » (NH4)3HP207 . ......................................................... 62,0 22,3

Триполифосфат аммония (NH4)3H2P30K>.................. 68,9 16,5

Отношения N : Р2О5 составляют для NH4H2PO4 1 : 5 и для (NH4)2HP04 1 :2,5. В диаммонийфосфате это соотношение являет­ся более благоприятным, однако вследствие своей меньшей устой­чивости, чем моноаммонийфосфат, один диаммонийфосфат в каче­стве удобрения не применяется, а используют его смесь с моноам - лгонийфосфатом. Такую смесь называют аммофосом.

Для увеличения отношения азота к фосфору к смеси фосфатов аммония добавляют какое-либо азотное удобрение, например суль­фат аммония. В этом случае смесь называют сульфоаммофо -

COM 275-277^

Фосфаты аммония применяют также в пищевой и фармацевти­ческой промышленности; их используют и в качестве антипире - нов — для пропитки тканей, дерева и строительных материалов с целью придания им огнестойкости.

В последнее время благодаря тому, что были разработаны спе­циальные методы выращивания крупных кристаллов моноаммоний­фосфата, последние нашли применение для изготовления осцилля­торов высокой частоты, используемых в электронной технике6'278.

Технический диаммонийфосфат, согласно ГОСТ 8515—57, выпу­скают двух марок — А и Б, — в которых должно содержаться, со­ответственно, не менее 50,5 и 48,5% Р205 и не более: 22,4 и 21,5% NH3, 6 и 8% влаги.

Производство фосфатов аммония

Сырьем для производства фосфатов аммония являются аммиак и ортофосфорная кислота, как экстракционная, так и термиче­ская 276,277>279-28*.

TOC o "1-3" h z Фосфорная кислота нейтрализуется по реакциям: .j

H3Po4 + Nh3 = Nh4H2Po4 Щ

H3P04 + 2Nh3 = (Nh4)2Hp04 Щ

Н3р04 + 3Nh3 - (Nh4)SP04

Как видно из рис. 371, наибольший выход твердого монофос­фата аммония достигается при осуществлении процесса по лучу АВ. Пви нейтрализации экстракционной кислоты, содержащей 35— 40% Н3Р04, выход кристаллов даже при 25° небольшой; поэтому предпочитают использовать предварительно выпаренную кислоту. При нейтрализации термической фосфорной кислоты (75% Н3Р04) состав системы соответствует точке С и количество образующейся твердой фазы весьма велико даже при температуре массы выше 75°. Этому способствует и испарение части воды за счет тепла реакции.

При применении с целью получения аммофоса экстракционной фосфорной кислоты, загрязненной примесями, в процессе нейтрали­зации ее аммиаком, по достижении рН = 4—5,5, выделяются в оса­док фосфаты железа и алюминия. Выделяется также гипс. Эти ве­щества осаждаются в форме кристиллогидратов (CaS04-2H20, FeP04-2H20, Fe2(S04)3-9H20 и т. п.), что связано с удалением из раствора некоторого количества воды 289~293.

Для того чтобы получаемая при нейтрализации пульпа не была слишком густой (это затрудняет поглощение ею аммиака), концен­трация исходной фосфорной кислоты не должна быть слишком вы­сокой. Чем больше в кислоте примесей железа и алюминия, тем ее концентрация должна быть ниже для того, чтобы компенсировать убыль воды, переходящей в твердую фазу с осадками, образующи­мися из примесей. Обычно исходная экстракционная фосфорная кислота, полученная из флотированных фосфоритов, берется с кон­центрацией 23—26% Р2О5, а более чистая кислота из апатитового концентрата — 26—30 % Р2О5.

Фосфаты аммония, получаемые из термической фосфорной кис­лоты, обладают высокой чистотой, не содержат примесей и исполь­зуются в основном в пищевой, фармацевтической промышленности или для других технических целей. Концентрация термической кис­лоты не должна быть выше 77% Н3Р04.

В настоящее время фосфаты аммония производят несколькими способами, которые отличаются между собой условиями нейтрали­зации кислоты и процессом кристаллизации готового продук­та 294-296

При использовании термической фосфорной кислоты процесс мо­жет быть осуществлен по сатураторной схеме 297 и по схеме с кри­сталлизацией в вакуум-кристаллизационной установке 298.

При нейтрализации экстракционной фосфорной кислоты, загряз­ненной примесями, выделяющиеся в осадок фосфаты железа и алюминия, гипс и другие примеси остаются в готовом продукте, за­грязняют его и снижают содержание основных компонентов. Для получения более чистого продукта из экстракционной фосфорной кислоты процесс нейтрализации ведут в две ступени. Сущность Двухступенчатой нейтрализации состоит в том, что в первой сту­пени неупаренная кислота нейтрализуется до рН = 4—4,5. При этом в осадок выделяется большая часть примесей, которые зат<»м отде­ляют от основного раствора фильтрацией. Отфильтрованный осадок сУшат до содержания 5—6% влаги, и он может быть использован для удобрительных целей, как аммофос 2-го сорта. Он содержит около 5% NH3 и 30—35% Р2О5 в усвояемой форме.

Иногда его примешивают к готовому продукту — аммофосу. Очи­щенный раствор подвергают дополнительной нейтрализации (2-я ступень) после упаривания 299"303. После нейтрализации кислоты до моноаммонийфосфата осуществляется охлаждение пульпы для до­полнительной кристаллизации; затем кристаллы отфуговывают и сушат, маточный раствор возвращают в реактор.

Раствор, содержащий в основном моноаммонийфосфат, выпари­вают под вакуумом до концентрации 34—36% Р2О5. Выпарка очи­щенного и частично нейтрализованного раствора значительно про­ще, чем предварительная выпарка фосфорной кислоты, вследствие отсутствия отложений на греющих элементах выпарных аппаратов и меньшей коррозии. Нейтрализацию очищенного раствора с полу­чением частично диаммонийфосфата осуществляют непрерывным способом последовательно в нескольких реакторах (обычно 3—• 4 ) 276. В процессе нейтрализации за счет выделения тепла реакции масса разогревается до 100—110°. Часть тепла расходуется на ис­парение влаги. В реакторы вводят аммиак из расчета образования 10—20% диаммонийфосфата. Так как диаммонийфосфат лучше растворим, чем моноаммонийфосфат, то чрезмерного загустева - ния пульпы не происходит — она остается достаточно подвиж­ной.

Из последнего реактора пульпа поступает в шнековый смеси­тель, где ее смешивают с частью высушенного продукта. Из сме­сителя массу направляют в барабанную вращающуюся сушилку, затем измельчают и просеивают. Большую часть ее возвращают в смеситель, а меньшую отправляют на склад 304.

Полученный продукт — аммофос — представляет собой смесь моно - и диаммонийфосфата 305'307.

Этим способом возможно также получить предназначаемые для промышленных целей моно - и диаммонийфосфат в отдельности.

Моноаммонийфосфат получают охлаждением выпаренного очи­щенного раствора до 18—20°. Выпавшие кристаллы отделяют на центрифуге и после этого высушивают. Маточный раствор возвра­щают в производственный процесс.

Получение диаммонийфосфата следует вести в две ступени; так как при подаче всего количества аммиака в одной ступени темпера­тура поднимается очень высоко и получается слишком густая пуль­па, вследствие чего имеют месго потери аммиака. Поэтому после реакции в первой ступени пульпа охлаждается, а затем поступает на реакцию второй ступени, кристаллизацию, центрифугирование и сушку.

Для получения диаммонийфосфата выпаренный раствор моно­аммонийфосфата дополнительно насыщают аммиаком в реакторе второй ступени до рН около 8. Во избежание потери аммиака на­сыщение ведут при температуре ниже 80°. Затем раствор диаммо­нийфосфата направляют на кристаллизацию, центрифугирование и

Сушку 308-311.

Для получения более прочных кристаллов диаммонийфосфата предлагается кристаллизацию вести в присутствии неорганических добавок — сульфатов или хлоридов 303> 312>313.

Сушку диаммонийфосфата производят при температуре не выше 60° во избежание потери им аммиака и перехода в моноаммоний- фосфат. Сушку же моноаммонийфосфата можно вести при темпера­туре до 100—110°.

Фосфаты аммония можно получать и другими способами, на­пример действием аммиака на раствор монокальцийфосфата или на водную суспензию дикальцийфосфата (т. е. используя суперфос­фат) 314

Зса (н2р04)2 + 8Nh3 = са3 (р04)2 + 4 (Nh4)2 Нр04 зсанр04 + 2Nh3 = са3 (р04)2 + (Nh4)2Hp04

Или взаимодействием хлористого аммония с фосфорной кислотой в присутствии бутилового и изоамилового спиртов. Степень пре­вращения достигает 85% 3i5-3is_

Процесс нейтрализации фосфорной кислоты можно также ве­сти путем распыления Н3РО4 с помощью дискового распылителя в башне в атмосфере аммиака, который поглощается каплями кис­лоты 319-323

Изучался процесс получения азотно-фосфорного удобрения в конусно-цилиндрическом аппарате с псевдоожиженным слоем, в котором были совмещены процессы нейтрализации кислоты ам­миаком, выпарки, грануляции и сушки. Подогретая кислота распы­ляется с помощью форсунки в поток поступающей непосредственно под решетку подогретой аммиачно-воздушной смеси 324. Исследова­лась возможность получения фосфатов аммония с высоким содер­жанием азота за счет частичного образования (МН4)3Р04 325.

Разработан способ получения кристаллического NH4H2PO4 ней­трализацией экстракционной фосфорной кислоты (49% Н3Р04) при Р = 2,1 ат и 165—170° с последующим распылением плава в башне высотой 15 м 325> 327 Полученный кристаллический NH4H2PO4 может быть подвергнут грануляции или использован для получения ком­плексных удобрений 328-331 ^

Фосфаты аммония можно получать также путем воздействия фосфорсодержащих компонентов на сульфат аммония 332. Наблю­дается тенденция замены серной кислоты фосфорной в процессе Улавливания аммиака из коксового газа с получением моно - и ди - аммонийфосфатов. Этот процесс может быть осуществлен как по старой сатураторной схеме, так и по бессатураторной схеме с

Вакуум-выпаркой 327> 333-340

Предложено также использовать раствор моноаммонийфосфата для извлечения аммиака из коксового газа. При этом образуется диаммонийфосфат:

NH4H2P04 + NH3 (NH4)2HP04

Этот процесс эффективен тем, что раствор NH4H2P04 поглощает только один аммиак341-342. В НИУИФ разработан способ для про­мышленного использования отбросных сернистых газов цветной металлургии с получением аммофоса. Этот метод основан на по­глощении SO2 из газов аммиаком с последующим разложением получаемых при этом растворов сульфит-бисульфита аммония фосфорной кислотой:

S02 + 2NH3 + Н20 = (NH4)2 S03 S02 + (NH4)2 S03 + Н20 = 2NH4HS03 Н3РО4 + NH4HSO3 = NH4H2P04 + S02 + H20 H3P04 + 2NH4HS03 =5 (NH4)2HP04 + 2S02 + 2H20

Получающуюся аммофосную пульпу перерабатывают в аммофос по схеме с сушкой в распылительной сушилке. Удаляемый из пуль­пы сернистый ангидрид может быть использован для получения серной кислоты 343>344.

Схема производства аммофоса с применением распылительной сушки пульпы 345, при которой не требуется предварительной вы­парки и очистки фосфорной кислоты, изображена на рис. 372. Экс­тракционная фосфорная кислота (22—28% Р205) нейтрализуется аммиаком непрерывным способом последовательно в нескольких реакторах 2. Вытекающая из последнего реактора пульпа посту­пает в распылительную сушилку 7. Сушка в распылительной сушилке производится дымовыми газами с температурой 650°, по­лучающимися в топке при сжигании газообразного топлива. Выхо­дящие из сушилки дымовые газы имеют температуру 100° и прохо­дят для очистки от пыли батарейный циклон 8.

Высушенный порошкообразный аммофос непрерывно дозируется в шнек-гранулятор 12, куда одновременно поступает также мелкая фракция готового продукта и пульпа аммофоса. Из шнека-грануля - тора гр анулированныи s ммофос поступает в сушилку барабанного типа 13. Сушку осуществляют дымовыми газами (500°) из топки 14. Высушенные гранулы рассеивают.

Фракцию с размером зерен больше 4 мм растворяют в фосфор­ной кислоте, идущей на аммонизацию; мелкую фракцию с части­цами меньше 1 мм направляют в гранулятор; фракцию с. частицами

J_ 4 мм выпускают в качестве

Жит 51% усвояемой Р2О5 и 11 ционной фосфорной кислоты, полученной из апатитового концентрата, и 47 % усвояемой Р2О5 и 10,7% N при использо­вании кислоты, полученной из фосфоритов Каратау.

О других вариантах полу­чения ортофосфатов аммония с другим аппаратурным офор­млением см. 346"348.

Получение аммофоса из фосфатных руд, содержащих соединения магния (фосфориты Каратау, Кингисеппские и др.), осложнено выделением в про­цессе аммонизации фосфорной кислоты осадка магнийаммо- нийфосфата MgNH4P04 • Н20. Он присоединяется к осадкам фосфатов полуторных окислов и это приводит к загустеванию реакционной пульпы. Путем ступенчатой нейтрализации фосфорной кислоты газообраз­ным аммиаком можно после­довательно выделить в твер­дую фазу полуторные окислы и магнийаммонийфосфат 349'35°. После их отделения и выпар­ки оставшегося чистого рас­твора можно получить круп­нокристаллический (или гра­нулированный) фосфат аммо­ния. По такой схеме можно эффективно перерабатывать Даже очень бедные и плохо обогащаемые флотацией фос­фориты, содержащие, напри­мер, меньше 20% Р205 и боль - ще 4% MgO. Отфильтрован­ный и высушенный магний­аммонийфосфат может приме­няться в качестве самостоя тельного азотно-фосфорномаг -

16 м. Е. Позин готового продукта. Продукт содер - ,5% N при использовании экстрак -

Ошоиэпм KDH (янпаон -Docbjodi Ион Umtgodu Nngowoj -Mnh^Ndwong

ФОСФАТЫ АММОНИЯ

Ниевого удобрения, содержащего азот в цитратнорастворимой фор­ме, или же в смеси с аммофосом.

Для получения хорошо фильтрующих осадков аммонизацию ве­дут при 80° сначала до рН 3,0—3,2, затем, после отделения осадка фосфатов железа и аммония, добавляют к фильтрату соду или сульш фат натрия с целью его обесфторивания. Это обеспечивает образе® вание хорошо фильтрующего осадка магнийаммонийфосфата прЩ последующей аммонизации до рН 6—6,5. Осадок кремнефторида ■ натрия, образующийся при обесфторивании раствора, может быть отфильтрован вместе с магнийаммонийфосфатом. Высушенный при 95—100° магнийаммонийфосфат содержит, например, 45,4% Р2О5, 17,5% MgO и 12,7% NH3.

При переработке описанным способом образца недообогащен - ного Кингисеппского фосфорита, содержащего 19,65% Р205, 4,28% MgO, 1,36% R2O3 и 1,52% фтора, основные компоненты распреде­лялись следующим образом. В неотмытый осадок фосфатов полу­торных окислов перешло 50,8% Р2О5 от его исходного количества в фосфорной кислоте, из них 40,4% в виде водорастворимого фос­фата аммония и 10,4% в виде цитратнорастворимых соединений. В неотмытый осадок магнийаммонийфосфата перешло 17,4% Р2О5 и в очищенном растворе осталось 31,8% Р2О5. Следовательно, при смешении фосфатов полуторных окислов с готовым продуктом — аммофосом в него перейдет 82,6% Р205, из которых 87,4% — в во­дорастворимой форме (в виде фосфатов аммония) и 12,6% —в ци­тратнорастворимой. С магнийаммонийфосфатом удаляется 73,/% MgO от исходного количества, остальное переходит в аммофос в виде цитратнорастворимого димагнийфосфата (8,65% MgO) и во­дорастворимых кремнефторида и сульфата магния (16,65% MgO). В аммофос переходит 90,8% израсходованного аммиака (из них 87,4% в виде фосфатов аммония), остальные 9,2% NH3 — в магний­аммонийфосфат.

Разложение природного фосфата серной кислотой можно вести с применением в качестве реакционной среды кислого раствора мо­ноаммонийфосфата. При этом образуется осадок гипса, фильтрую­щий лучше, чем при разложении в отсутствие иона аммония, и производительность фильтров значительно увеличивается. Улуч­шается на 1—1,5% и степень отмывки кислоты от осадка. Реак­ционный раствор после разложения фосфата становится более кис­лым, чем до разложения, и, после отделения гипса, его нейтрали­зуют аммиаком для перевода вновь образовавшейся кислоты в моноаммонийфосфат. Затем часть этого раствора вместе с ча­стью суспензии гипса возвращают в первый сернокислотный экс­трактор, а остальную часть после аммонизации до требуемой сте­пени высушивают для получения аммофоса.

Аммофос может быть получен непосредственно из природных фосфатов без предварительной их переработки в фосфорную кис­лоту. Этот способ351 заключается в разложении фосфата концен­трированным раствором фтористого аммония по реакции: 2Ca5F (Р04)3 + I8NH4F = 10CaF2 + 6 (NH4)3_X Нд. Р04 + 6*NH3

При 95—102° и трех-четырехкратном избытке 35—45%-ного рас­твора NH4F против стехиометрического количества апатитовый кон­центрат разлагается в течение 2—6 ч практически полностью. По­сле отделения осадка CaF2 разделение содержащихся в растворе фосфатов аммония от избытка фторида аммония можно осущест­вить или выпаркой с кристаллизацией, или введением в раствор со­единений алюминия для осаждения гексафторалюмината аммо­Ния—аммониевого криолита 3NH4F - A1F3 352. В последнем случае остается раствор, из которого получается аммофос, содержащий, например, ~58% Р2О5 и ~15% N. Из криолита легко регенери­руется NH4F. Из CaF2 фтористый аммоний может быть регенери­рован гидротермическим (стр. 1116) или гидрохимическими спосо­бами, например, конверсией в СаС03 и др. Сырьем для получения аммофоса по этой схеме являются только природный фосфат и аммиак—расход кислотного реагента (серной кислоты) полностью исключается. Потери фтора при регенерации его из фтореда каль­ция и криолита, а также с раствором фосфатов аммония компен­сируются за счет фтора, содержащегося в природном фосфате. Остальная часть этого фтора может быть выпущена в виде фтори­дов— CaF2, AIF3 (см. ниже) или других. Отсутствует неорганизо­ванное выделение фтористых газов, что улучшает санитарные усло­вия производства; уменьшается потребность в специальных кор - розионноустойчивых материалах, так как разложение идет в ней­тральной среде — величина рН конечного расТвора 6,7—6,9.

Фосфаты полуторных окислов, так же как и фосфат кальция, легко разлагаются фторидом аммония; при этом образуются фос­фаты аммония и криолиты по реакции:

RP04 Aq + 6NH4F = 3NH4FRF3 + (NH4)3_^ H^P04 + *NH3 + Aq

Поэтому этот способ позволяет вовлечь в производство удобре­ний природные фосфаты и фосфорные промышленные отходы с большим содержанием полуторных окислов, что расширяет сырье­вую базу туковой промышленности.

При получении аммофоса по обычной схеме — с предваритель­ным сернокислотным разложением природного фосфата — введе­ние в реакционную пульпу NH4F увеличивает использование сырья (Р2О5) за счет выделения полуторных окислов в форме криоли­тов 353 Это позволяет и в этом процессе применять сырье с повы­шенным содержанием полуторных окислов.

Этим же методом можно получать фторид алюминия с пони­женным содержанием Р205 через гексафторалюминат аммония из Газов суперфосфатного производства.

Технология минеральных солей (удо­Брений, пестицидов, промышленных со­лей, окислов и кислот)

Кислота азотная оптом

При производстве удобрений, красителей, взрывчатых веществ требуется такой компонент, как кислота азотная. Вещество также используется в современной металлургии, при синтезе серной кислоты. Если вы ищете, где продается азотная кислота в …

Родентициды – средства защиты от грызунов

Родентициды это средства защиты от грызунов. Их применяют для уничтожения крыс, мышей и некоторых видов диких хомяков. Применять их в качестве уничтожителя начинают в том случае, если грызуны становятся стихийным …

Получение двуокиси хлора из хлорита натрия

При взаимодействии хлорита натрия с хлором происходит обра­зование хлористого натрия и выделяется двуокись хлора: 2NaC102 + С12 = 2NaCl + 2 СЮ2 Этот способ ранее был основным для получения двуокиси …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.