ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ СВАРКИ ПЛАВЛЕНИЕМ
ДУГОВАЯ СВАРКА В ЗАЩИТНЫХ ГАЗАХ
Сварка в защитных газах нашла широкое применение в промышленности. Этим способом можно соединять вручную, полуавтоматически или автоматически в различных пространственных положениях разнообразные металлы и сплавы толщиной от десятых долей до десятков миллиметров.
v Сущность способа. При сварке в зону дуги 1 через сопло 2 непрерывно подается защитный газ 3 (рис. 36). Теплотой дуги расплавляется осповной металл 4 и, если сварку выполняют
плавящимся электродом, расплавляется и электродная проволока. Расплавленный металл сварочной ванны, кристаллизуясь, образует шов. При сварке неп давящимся электродом электрод не расплавляется, а его расход вызван испарением металла или частичным оплавлением при повышенном допустимом сварочном токе.
Рис. 36. Дугоізая сварка в защитных газах |
Образование шва происходит за счет расплавления кромок основного металла или дополнительно вводимого присадочного металла. В качестве защитных газов
применяют инертные (аргон и гелий) и активные (углекислый газ, водород, кислород п азот) газы, а также их смеси (Ат + Не, Лг + С02, Аг + 02, С02 + 02 и др.). По отношению к электроду защитный газ можно подавать центрально или сбоку (рис. 37). Сбоку газ подают при больших скоростях сварки плавящимся электродом, когда при центральной защите надежность защиты нарушается из-за обдувания газа неподвижным воздухом. Сквозняки или встетр при сварке, сдувая струю защитного газа, могут резко ухудшить качество сварного шва или соединения. В некоторых случаях, особенно при сварке вольфрамовым электродом, для получения необходимых технологических свойств дуги, а также с целью экономии дефицитных и дорогих инертных газов используют защиту двумя концентрическими потоками газа.
Для сварки тугоплавких и активных металлов, часто выполняемой вольфрамовым электродом, для улучшения защиты нагретого и расплавленного металлов от возможного подсоса в зону сварки воздуха используют специальные камеры (сварка в контролируемой атмосфере). Небольшие детали помещают в специальные камеры, откачивают воздух до создания вакуума до 10 [1] мм рт. ст. и заполняют инертным газом высокой чистоты. Сварку выполняют
а) б) е) г) Рис 37. Подачи защитных газов в зону сварки: |
Рис. 38. Камера с контролируемой атмосферой для ручной дуговой сварки вольфрамовым электродом: 1 — корпус камеры; 2 — смотровое окно; з — рабочие рукава-перчатки сварщика, соединенные с корпусом камеры; і — горелка |
вручную (рис. 38) или автоматически с дистанционным управлением.
Для сварки в контролируемой атмосфере крупногабаритных изделий находят применение обитаемые камеры объемом до 450 м3. Сварщик находится внутри камеры в специальном скафандре с индивидуальной системой дыхания. Инертный газ, заполняющий камеру, регулярно очищается и частично заменяется. Для доступа сварщика в камеру и подачи необходимых материалов имеется система шлюзов. При крупногабаритных изделиях используют переносные мягкие камеры из полиэтилена, устанавливаемые на поверхности изделия. После их продувки и заполнения защитным газом сварку выполняют вручную или механизированно. Для этих же целей используют подвижные камеры (рис. 37, г), представляющие собой дополнительную насадку на уширенное газовое сопло горелки. Сварка в этом случае обычно выполняется автоматически.
Теплофизические свойства защитных газов оказывают большое влияние на технологические свойства дуги и форму швов. Например, по сравнению с аргоном гелий имеет более высокий потенциал ионизации и большую теплопроводность при температурах плазмы. Поэтому дуга в гелии более «мягкая». При равных условиях дуга в гелии имеет более высокое напряжение, а обра - I зующийся шов имеет меньшую глубину проплавления и большую ширину. Поэтому гелий целесообразно использовать при сварке! тонколистового металла. Кроме того, он легче воздуха и аргона, что требует для хорошей защиты зоны сварки повышенного его расхода (1,5—3 раза). Углекислый газ по влиянию на форму шва занимает промежуточное положение.
Широкий диапазон используемых защитных газов, обладающих значительно различающимися теплофизическими свойствами, обусловливает большие технологические возможности этого спо-
rof»a как в отношении свариваемых металлов (практически всех), так и их толщин (от 0,1 мм до десятков миллиметров). Сварку можно выполнять, используя также неплавящийся (угольный, вольфрамовый) или плавящийся электрод.
По сравнению с другими способами сварка в защитных газах обладает рядом преимуществ: высокое качество сварных соединений на разнообразных металлах и сплавах различной толщины; возможность сварки в различных пространственных положениях; возможность визуального наблюдения за образованием шва, что особенно важно при полуавтоматической сварке; отсутствие операций по засыпке и уборке флюса и удалению шлака; высокая производительность и легкость механизации и автоматизации; низкая стоимость при использовании активных защитных газов. К недостаткам способа по сравнению со. сваркой под флюсом относится необходимость применения защитных мер против световой и тепловой радиации дуги.
Техника сварки неплавящимся электродом. В настоящее время сварка угольным электродом находит ограниченное применение. В качестве защитного газа в этом случае используют углекислый газ. Хорошие результаты достигаются при автоматической сварке оплавлением отбортованных кромок при изготовлении канистр на специальных установках. Это объясняется образованием окиси углерода (СО) при взаимодействии углекислого газа с твердым углеродом. Окись углерода — эффективный защитный газ, так как он не растворяется в металле и, восстанавливая окислы, улучшает качество металла шва. Следует помнить, что окись углерода очень токсична.
При применении вольфрамового электрода в качестве защитных используют инертные газы или их смеси и постоянный или переменный ток. Лучшие результаты при сварке большинства металлов дает применение электродов не из чистого вольфрама, а торированных, итерированных или лантанированных. Добавка в вольфрам при изготовлении электродов 1,5—2% окислов иттрия и лантана повышает их стойкость и допускает применение повышенных на 15% сварочных токов. Перед сваркой рабочий конец электрода обычно затачивают на конус с углом 60° на длине двухтрех диаметров. Форма заточки электрода влияет на форму и размеры шва. С уменьшением угла заточки и диаметра притупления в некоторых пределах глубина проплавления возрастает.
Технологические свойства дуги в значительной мере определяются родом и полярностью сварочного тока. При прямой полярности на изделии выделяется до 70% теплоты дуги, что обеспечивает глубокое проплавление основного металла. При обратной полярности напряжение дуги выше, чем при прямой полярности. На аноде — электроде выделяется большое количество энергии, что приводит к значительному его разогреву и возможному оплавлению рабочего конца. Ввиду этого допустимые плотности сварочного тока понижены (табл. 3). Дугу постоянного тока
обратной полярности с вольфрамовым электродом в практике используют ограниченно.
Таблица 3. Допустимая сила сварочного тока для ввльфрамовыж электродов
|
Примечание. При применении иттрированных и лантанированных электродов силу сварочпого тока допустимо увеличивать на 15%. |
При использовании переменного тока полярность электрода и изделия меняется с частотой тока. Поэтому количество теплоты, выделяющейся на электроде и изделии, примерно одинаково. Электропроводность дуги различна в различные полупериоды полярности переменного тока. Она выше в те полупериоды, когда катод на электроде (прямая полярность) и дуговой разряд происходит в основном за счет термоионной эмиссии ввиду высокой температуры плавления и относительно низкой теплопроводности вольфрама. В полупериоды, когда катод на изделии, электропроводность дуги ниже, напряжение, требуемое для возбуждения дуги, выше, поэтому ее возбуждение происходит с некоторым опозданием (рис. 39).
В соответствии с различным напряжением дуги в разные полу - перподы переменного тока различна и величина сварочного тока, т. е. в сварочной цепи появляется постоянная составляющая тока. В данном случае мы имеем дело с выпрямляющим (вентильным) эффектом рассматриваемого типа дуги, вызванным различием теплофизических свойств электрода и изделия. Величина постоянной составляющей зависит от величины сварочного тока, скорости сварки, свариваемого металла и т. д. Ее наличие ухудшает качество сварных швов па алюминиевых сплавах и снижает стойкость вольфрамового электрода. Для уменьшения величины постоянной составляющей тока применяют различные способы (см. гл. IV).
Интересной разновидностью применения вольфрамового электрода является сварка погруженной дугой (рис. 40), при которой используют электрод повышенного диаметра и повышенный сварочный ток. Соединение собирают встык без разделки кромок, без зазора. При увеличении подачи защитного газа 1 через сопло
Рис. 40. Сварки в защитных газах вольфрамовым электродом погруженной дугой |
ГГ |
до 40—50 л/мин дуга обжима - і'тсл газом, что повышает ее температуру. Как и в плазма - тропах, проходящий через дугу газ, нагреваясь, увеличивает свой объем и приобретает свойства плазмы. Давление защитного газа и дуги 2, вытесняя расплавленный металл 4 из-под дуги, способствует ее углублению в основной металл 3.
Таким образом, дуга горит в образовавшейся в металле полости. Это позволяет опустить электрод так, чтобы дуга горела ниже поверхности металла (погруженная в металл дуга). Образующаяся ванна расплавленного металла при кристаллизации образует шов. Этим способом можно сваривать титан, алюмипий, высоколегированные стали и другие металлы толщиной до 3(5 мм с двух сторон (чем меньше плотность свариваемого металла, тем больше толщина). Шов при атом имеет специфическую бочкообразную форму, определяемую тем, что дуга горнт ниже верхней плоскости металла.
Сварку погруженной дугой можно осуществлять и в вертикальном положении на подъем. В этом случае расплавленный металл сварочной ванны, стекая вниз, удерживается кристаллизатором (медным охлаждаемым водой кокилем), который и формирует принудительно шов. Сварка возможна с одпой стороны с неполным проплавлением или за два прохода с двух сторон с неполным проплавленнем в каждый проход. При сварке погруженной дугой применяют входные и выходные планки для вы-
Рис. 39. Асимметрия дуги переменного тока при сварке вольфрамовым электродом в среде аргона; U, KT — напряжение источника сварочного тока; £7д — напряжение дуги; /д — ток дуги |
Рис. 41. Сварка полым вольфрамовым электродом в вакууме: |
і — полый катод; 2 — вакуумная камера; 3 — дозирующее устройство; 4 — баллон с инертным газом; 5 — насос; в — дуга; 7 — свариваемое изделие; 8 — источник тока
ШИЕ |
Рис. 42. Изменение сварочпого тока и напряжения при импульсной сварке вольфрамовым электродом (и); /св — сварочный ток; /лсж — ток дежурной дуги; in — время паузы; гс„ — время сварки (/сн + tn — ta — время цикла); швы в плоскости (б) и продольном сечении (б) |
□55353Х! |
в) |
вода дефектных начального (неполный провар) и конечного (усадочная раковина) участков шва.
Другой разновидностью сварки вольфрамовым электродом является сварка полым вольфрамовым электродом в вакууме (рис. 41). Возбуждение и поддержание дуги в вакууме 10 :1 мм рт. ст. представляет определенные трудности, так как тлеющий разряд переходит на стенки камеры. Подача в рассматриваемом способе сварки дозируемого количества газа в полость электрода стабилизирует катодное пятно на внутренней поверхности электрода. Перемещение катода по внутренней полости вызывает разогрев электрода до яркого свечения. При силах тока свыше 50 А дуга представляет собой голубоватый разряд, цилиндрический по форме на всей длине дуги.
Можно предполагать, что газ, подаваемый в полость электрода, ионизируясь, приобретает свойства плазмы. Количество газа, подаваемое в полость электрода, должно обеспечивать давление газа в камере меньше 50 мм рт. ст. При больших давлениях катодное пятно выходит на торец электрода и хаотически перемещается по нему. Давление в камере 10~2—10~4 мм рт. ст. при расходе газа 0,01—0,1 л/мин создает наилучшие условия повышения концентрации дугового разряда. Применение подобного способа сварки имеет определенные металлургические преимущества, так как способствует удалению газов из расплавленного металла и уменьшает угар легирующих элементов. Этим способом можно сваривать различные металлы и сплавы толщиной до 15 мм.
В последние годы для сварки тонколистового металла находит применение импульсная дуга. Основной металл расплавляется дугой, горящей периодически отдельными импульсами постоянного тока (рис. 42, а) с определенными интервалами во времени. При большом перерыве в горении дуги (/,,) дуговой промежуток деионизируется, что приводит к затруднению в повторном возбуждении дуги. Для устранения этого недостатка постоянно поддерживается вторая, обычно маломощная дежурная дуга от самостоятельного
источника питания. На эту дугу и накладывается основная импульсная дуга. Дежурная дуга, постоянно поддерживая термоэлектронную эмиссию с электрода, обеспечивает стабильное возникновение основной сварочной дуги.
Шов в этом случае состоит из отдельных перекрывающих друг друга точек (ряс. 42, б и в). Величина перекрытия зависит от металла и его толщины, силы сварочного тока и тока дежурной дуги, скорости сварки и т. д. С увеличением силы тока и длительности его импульса ширина шва и глубина проплавления увеличиваются (рис. 43). Размеры шва в большей степени зависят от силы тока, чем от длительности его импульса. Благоприятная форма отдельных точек, близкая к кругу, уменьшает возможность вытекания расплавленного металла из сварочной ванны (прожога). Поэтому сварку легко выполнять на весу без подкладок при хорошем качестве во всех пространственных положениях.
Представляет определенный интерес использование внешнего магнитного поля для отклонения или перемещения непрерывно горящей дуги. Внешнее переменное или постоянное магнитное ноле, параллельное или перпендикулярное к направлению сварки, создается П-образными электромагнитами. При использовании постоянного магнитного поля дугу можно отклонить в любую сторону относительно направления сварки. При отклонении дуги в сторону направления сварки (магнитное поле также параллельно направлению сварки) наблюдается такой же эффект, как и при сварке наклонным электродом — углом вперед. В этом случае уменьшается глубина проплавлення. При отклонении дуги в обратном направлении наблюдается увеличение глубины проплавлення, как при сварке с наклоном электрода углом назад.
Рис. 43. Зависимость размеров шва от основных параметров импульсно-дуговой сварки |
При переменном внешнем магнитном поле дуга колеблется с частотой внешнего магнитного поля. В результате изменяются условия ввода теплоты в изделие и, в частности, ее распределение по поверхности. При колебании дуги і олерек направления сварки увеличивается ширина шва и уменьшается глубина проплавлення. Это позволяет сваривать тонколистовой металл. Удобно использовать этот способ для сварки разнородных металлов (например, меди и стали и др.) небольшой толщины при отбортовке кромок.
Колебания, сообщаемые расплавленному металлу сварочной ванны, изменяют характер его кристаллизации и способствуют измельчению зерна. В результате улучшаются свойства наплавленного металла. Поэтому этот способ используют при сварке металлов, характеризующихся крупнозернистым строением металла шва, таких как алюминий, медь, титан и их сплавы. Имеется положительный оныт использования способа и при сварке высокопрочных сталей и сплавов.
Сварка волх>фрамовым электродом обычно целесообразна для соединения металла толщиной 0,1—6 мм. Однако ее можно применять и для больших толщин. Сварку выполняют без присадки, когда шов формируется за счет расплавления кромок, и с дополнительным присадочным металлом, предварительно уложенным в разделку или подаваемым в зону дуги в виде присадочной проволоки. Угловые и стыковые швы во всех пространственных положениях выполняют вручную, полуавтоматически и автоматически.
Для получения качественной сварки, особенно тонколистовых конструкций, следует обеспечивать точную подготовку и сборку кромок прихватками вручную вольфрамовым электродом или в специальных сборочно-сварочных приспособлениях.
Загрязнение рабочего конца электрода понижает его стойкость (образуется сплав вольфрама с более низкой температурой плавления) и ухудшает качество шва. Поэтому дугу возбуждают без прикосновения к основному металлу или присадочной проволоке, используя осциллятор. При правильном выборе силы сварочного тока рабочий конец электрода расходуется незначительно и долго сохраняет форму заточки.
Качество шва в большой степени определяется надежностью оттеснения от зоны сварки воздуха. Необходимый расход защитного газа устанавливают в зависимости от состава и толщины свариваемого металла, типа сварного соединения и скорости сварки. Соединения на рис. 44, о и б для достаточной защиты требуют нормального расхода газов. Типы соединений на рис. 44, в и г требуют повышенного расхода защитного газа, поэтому при сварке этих соединений рекомендуется применять экраны, устанавливаемые сбоку и параллельно шву. Поток защитного газа при сварке должен надежно охватывать всю область сварочной ванны, разогретую часть присадочного прутка и электрод. При повышенных скоростях сварки поток защитного газа
Рис. 44. Расположение границы защитной струн газа при сварке соединений различных типов |
может оттесняться воздухом. В этих случаях следует увеличивать расход защитного газа.
При сварке многопроходных швов с V - или Х-образной разделкой кромок первый проход часто выполняют вручную или механизированно без присадочного металла на весу. Разделку заполняют при последующих проходах с присадочным металлом. Для формирования корня пгва можно использовать медные или стальные съемные подкладки, флюсовую подушку. В некоторых случаях возможно применение и остающихся подкладок. При сварке активных металлов необходимо не только получить хороший провар в корне шва, но и обеспечить защиту от воздуха с обратной стороны расплавленного и нагретого металлов. Это достигается использованием медных или других подкладок с канавками, в которые подается защитный инертный газ (рис. 45). Эта же цель в некоторых случаях достигается при использовании флюсовых подушек.
Рис 4о Подкладки дли защиты от воздуха обратной стороны шва при сварке: |
°) |
а — односторонней; б — двусторонней; 1 — медная подкладка; 2 — защитный газ; 3 —; свариваемый металл; 4 — заншмиое приспособление |
При сварке труб или закрытых сосудов газ пропускают внутрь сосуда. Инертные газы, увеличивая поверхностное натяжение расплавленного металла, улучшают формирование корня шва. Поэтому их поддув используют при сварке сталей на весу. При сварке на весу, особенно без присадочного металла, следует тщательно поддерживать требуемую величину зазора между кромками.
При соединении встык металла толщиной до 10 мм ручную сварку ведут справа налево (рис. 46). При сварке металла меньшей толщины угол между горелкой и изделием устанавливают равным 60°. При сварке изделий больших толщин применяют правый способ; угол между горелкой и изделием, так же как и при сварке угловых соединений, устанавливают равным 00°.
Рис. 46. Расположение горелки и присадочного прутка при ручной аргонодуговой сварке: |
1 — электрод; 2 — присадочный пруток; 3 — защитный газ; 4 — сопло |
Присадочный пруток при ручной сварке тонколистового материала вводят не в столб дуги, а несколько сбоку возвратно - поступательными движениями; при сварке металла большей толщины — поступательно-поперечными перемещениями. При сварке многослойных швов отдельные валики рекомендуется выполнять не на всю ширину разделки (многопроходными).
При автоматической и полуавтоматической сварке электрод располагают перпендикулярно к поверхности изделия. Угол между ним и присадочной проволокой (обычно диаметром 2—4 мм) должен приближаться к 90°. В большинстве случаев направление сварки выбирают таким, чтобы присадочный пруток находился впереди дуги (подавался в головную часть сварочной ванны).
При автоматической и полуавтоматической сварке вертикальных швов на спуск, если сварочная ванна имеет значительные размеры, возможно затекание расплавленного металла под вольфрамовый электрод, что резко уменьшает глубину проплавления и может привести к короткому замыканию. Вылет конца электрода из сопла не должен превышать 3—5 мм, а при сварке угловых швов и стыковых с глубокой разделкой — 5—7 мм. Длина дуги должна поддерживаться в пределах 1,5—3 мм. Для предупреждения непровара в начале и конце шва рекомендуется применять выводные планки. Обрывать дугу следует постепенным ее удлинением, а при автоматической сварке — уменьшением силы сварочного тока. Для предупреждения окисления вольфрама и защиты расплавленного металла в кратере после обрыва дуги защитный газ выключают через 5—10 с. Защитный газ включают за 15—20 с до возбуждения дуги для продувки шлангов от воздуха.
Техника сварки плавящимся электродом. В зависимости от свариваемого металла и его толщины в качестве защитных газов используют инертные, активные газы или их смеси. 13 силу физических особенностей стабильность дуги и ее технологические свойства выше при использовании постоянного тока обратной полярности. При использовании постоянного тока прямой полярности количество расплавляемого электродного металла увеличивается
Гиг,. 47. Осноппме формы расплавления и переноса электродного металла: и — короткими замыканиями; б — ни цельный; в — струйный |
ил 25—30%, но резко снижается стабильность дуги я повышаются потери металла на разбрызгивание. 11римепенио переменного тока невозможно из-за нестабильного горения дуги. При сварке плавящимся алектродом шов образуется за счет проплавлення основного металла талла — электродной |
и расплавления дополнительного ме - проволоки. Поэтому форма и размеры шва, помимо прочего (скорости сварки, пространственного положения электрода и изделия и др.), зависят также от характера расплавления и переноса электродного металла в сварочную напну. Характер переноса электродного металла определяется а основном материалом электрода, составом защитного газа, плотностью сварочного тока и рядом других факторов.
Можно выделить три основные формы расплавления электрода и переноса электродного металла в сварочную ванну. Процесс сварки с периодическими короткими замыканиями характерен для сварки электродными проволоками диаметром 0,5—1,6 мм при короткой дуге с напряжением 15—22 В. После очередного короткого замыкания (I и II на рис. 47, а) силой поверхностного натяжения расплавленпый металл на торце электрода стягивается в каплю. В результате длина и напряжение дуги становятся максимальными.
Во все стадии процесса скорость подачи электродной проволоки постоянна, а скорость ее плавления изменяется и в периоды III и IV меньше скорости подачи. Поэтому торец электрода с каплей приближается к сварочной ванне (длина дуги и со напряжение уменьшаются) до короткого замыкания (F). При коротком замыкании резко возрастает величина сварочного тока и, как результат этого, сжимающее действие электромагнитных ті л, совместное действие которых разрывает перемычку жидкого металла между электродом и изделием. Во время короткого замы- каппн капля расплавленного электродного металла переходит и сварочную ванну. Далее процесс повторяется.
Частота периодических замыканий дугового промежутка может изменяться в пределах 90—450 в секунду. Для каждого диаметра электродной проволоки в зависимости от его материала, защитного газа и т. д., существует диапазон сварочных токов, в кото-
ром возможен процесе сварки с короткими замыканиями. При оптимальных параметрах процесса сварка возможна в различных пространственных положениях, а потери электродного металла на разбрызгивание не превышают 7%. Периодические короткие замыкания могут осуществляться и принудительно, например механическим путем (вибродуго - вая наплавка).
иг, в JT |
£ |
тп Л_ |
Рис. 48. Изменение тока п напряжения дуги при импульсно-дуговой сварке; /п, Un — ток и напряжение основной дуги; U„ — ток и напряженно дуги во время импульса; Тп, — длительность паузы и импульса |
Увеличение плотности сварочного тока и длины (напряжения) дуги ведет к изменению характера расплавления и переноса электродного металла, перехода от сварки короткой дугой с короткими замыканиями к процессу с редкими короткими замыканиями или без них. В сварочную ванну электродный металл переносится нерегулярно, отдельными крупными каплями различного размера (рис. 47, б), хорошо заметными невооруженным глазом. При этом ухудшаются технологические свойства дуги, затрудняется сварка в потолочном положении, а потери электродного металла на угар и разбрызгивание возрастают до 15%.
Для улучшения технологических свойств дуги применяют периодическое изменение ее мгновенной мощности — импульснодуговая сварка (рис. 48). Теплота, выделяемая основной дугой, недостаточна для плавления электродной проволоки со скоростью, равной скорости ее подачи. Вследствие этого длина дугового промежутка уменьшается. Под действием импульса тока происходит ускоренное расплавление электрода, обеспечивающее формирование капли на его конце. Резкое увеличение электродинамических сил сужает шейку капли и сбрасывает ее в направлении сварочной ванны в любом пространственном положении.
Можно использовать одиночные импульсы (рис. 48) или группу импульсов с одинаковыми и различными параметрами. В последнем случае первый или первые импульсы ускоряют расплавление электрода, а последующие сбрасывают каплю электродного металла в сварочную ванну. Устойчивость процесса зависит от соотношения основных параметров (величины и длительности импульсов и пауз). Соответствующим подбором тока основной дуги и импульса можно повысить скорость расплавления электродной проволоки, изменить форму и размеры шва, а также уменьшить нижний предел сварочного тока, обеспечивающий устойчивое горение дуги.
При достаточно высоких плотностях постоянного по величине (без импульсов или с импульсами) сварочного тока обратной полярности и при горении дуги в инертных газах может наблюдаться очень мелкокапельный перенос электродного металла. Название «струйный» он получил потому, что при его наблюдении невооруженным глазом создается впечатление, что расплавленный металл стекает в сварочную ванну с торца электрода непрерывной струей (рис. 47, в). Изменение характера переноса электродного металла с капельного на струйный происходит при увеличении силы сварочного тока до «критического» для данного диаметра электрода.
Величина критического тока уменьшается при активи ровапии электрода (нанесении на его поверхность тем или иным способом некоторых легкоионизирующих веществ), увеличении вылета электрода. Изменение состава защитного газа также влияет на величину критического тока. Например, добавка в аргон до 5% кислорода снижает значение критического тока. При сварке в углекислом газе без применения специальных мер получить струйный перенос электродного металла невозможно. Он не получен и при использовании тока прямой полярности.
При переходе к струйному переносу поток газов и металла от электрода в сторону сварочной ванны резко интенсифицируется благодаря сжимающему действию электромагнитных сил. В результате под дугой уменьшается прослойка жидкого металла, в сварочной ванне появляется местное углубление. Повышается теплопередача к основному металлу, и шов приобретает специфическую форму с повышенной глубиной нроплавления по его оси. При струйном переносе дуга очень стабильна — колебаний сварочного тока и напряжений не наблюдается. Сварка возможна во всех пространственных положениях.
При сварке плавящимся электродом, так же как и при сварке иеплавящимся электродом, внешние магнитные поля отклоняют дугу. Однако эффект от использования внешнего магнитного ноля наблюдается при сварке длинной дугой и наиболее заметен при струйном переносе электродного металла. В этом случае расплавленный торец электрода колеблется синхронно с частотой внешнего магнитного поля. При поперечных колебаниях увеличивается ширина шва и уменьшается глубина проплавлення. В результате образующийся шов не имеет повышенной глубины проплавления по его оси.
Изменять технологические характеристики дуги можно, используя центральную подачу защитного газа с высокой скоростью. Высокие скорости истечения газа при обычных расходах достигаются применением сопл с уменьшенным выходным отверстием. Обдувание дуги газом способствует уменьшению ее поверхности, т. е. сжатию. В результате ввод теплоты дуги в изделие становится более концентрированным. Кинетическим давлением потока газа расплавленный металл оттесняется из-под дуги, и дуга углубляется в изделие. В результате глубина проплавления увеличивается в 1,5—2 раза. Однако при этом повышается и возможность образования в швах дефектов.
В последние годы в отечественной и зарубежной практике находит применение способ сварки но узкому или щелевому зазору. При этом способе изделия толщиной до 200 мм без скоса кромок собирают с зазором между ними 6—12 мм. Сварку осуществляют на автоматах плавящимся и неплавяпщмся электродом, одной или двумя последовательными дугами (при плавящемся электроде сварочные проволоки диаметром до 2 мм). При сварке сталей плавящимся электродом для защиты лучше использовать смесь из 75—80% аргона и 25—20% углекислого газа. Для сварки алюминия и его сплавов применяют смесь аргона и гелия. Разделку заполняют путем наложения одинаковых по сечению валиков (см. рис. 9, а). Метод характеризуется уменьшенной протяженностью зоны термического влияния и равномерной мелкокристаллической структурой швов. Возможна сварка не только в нижнем, но и в других пространственных положениях.
Экономичность способа определяется уменьшением числа проходов в шве за счет отсутствия разделки кромок. Повышение производительности достигается также повышением скорости расплавления электродной проволоки с увеличенным вылетом. Нагрев электрода в вылете протекающим по нему сварочным током обеспечивает повышение коэффициента расплавления. Однако при этом уменьшается глубина проплавления, поэтому способ целесообразно применять для сварки швов, требующих большого количества наплавленного металла.
При сварке плавящимся электродом в защитных газах зависимости формы и размеров шва от основных параметров режима такие же, как и при сварке под флюсом (см. рис. 28). Для сварки используют электродные проволоки малого диаметра (до 3 мм). Поэтому швы имеют узкую форму провара и в них может наблюдаться повышенная зональная ликвация (см. рис. 29). Применяя поперечные колебания электрода (см. рис. 30, а), изменяют форму шва и условия кристаллизации металла сварочной ванны и уменьшают вероятность зональной ликвации. Имеется опыт применения для сварки в углекислом газе электродных проволок диаметром 3—5 мм. Сила сварочного тока в этом случае достигает 2000 Л, что значительно повышает производительность сварки. Одиако при подобных форсированных режимах наблюдается ухудшенное формирование стыковых швов и образование в них подрезов. Формирование и качество угловых швов вполне удовлетворительны.
Ввиду высокой проплавляющей способности дуги повышаются требования к качеству сборки кромок под сварку. Качественный провар и формирование корня шва обеспечивают теми же приемами (см. рис. 16, 17 и 45), что и при ручной сварке или сварке под флюсом (подкладки, флюсовые и газовые подушки и т. д.).
С уменьшением плотности тока стабильность дуги понижается (табл. 4). Величина вылета электрода также влияет на стабильность процесса и размеры шва. Ниже приведен оптимальный вылет плавящегося электрода при сварке в защитных газах:
Диаметр электродной проволоки, мм 0,5 0,8 1,0 1,6 2,0
Вылет электрода, мм. . 5—7 6—8 8- 10 10—12 12—14
Расстояние от сопла горелки до изделия обычно выдерживают п пределах 8—15 мм. Токоподводящий наконечник должен находиться па уровне краев сопла или утапливаться до 3 мм. При сварке угловых и стыковых швов с глубокой разделкой допускается выступание токоподводящего наконечника из сопла на
Таблица 4. Величина минимального тока (А), при котором обеспечивается стабильное горение дуги (электрод, плавящийся из низколегированной стали)
|
5—10 мм. Полуавтоматическую сварку в нижнем положении можно выполнять правым или левым методом, узким валиком или с поперечными колебаниями.
При сварке тонколистового металла электрод отклоняют от вертикали на 20—30° в сторону направления сварки. При сварке угловых швов в соединениях с вертикальной стенкой держатель дополнительно отклоняют от вертикальной стенки па угол 30— 45°. Вертикальные швы на тонколистовом металле обычно выполняют на спуск (электрод под углом назад для лучшего удержания расплавленного металла от стекания). Сварку на подъем применяют при необходимости обеспечить глубокий провар кромок. Мри сварке горизонтальных швов электрод располагают па нижней части кромок и перемещают с поперечными колебаниями. Потолочные швы выполняют вертикальным электродом или с наклоном углом назад с поперечными колебаниями.
Сущность н техника сварки электрозаклепками. Сварная точка образуется за счет теплоты неподвижной дуги, обеспечивающей сквозное проплавление верхнего листа и сквозное или частичное проплавление нижнего. В зону дуги и сварочной ванны подают защитные газы или их смеси. В отличие от контактной дуговая сварка возможна при одностороннем подходе к месту соединения, что не ограничивает размеры изделия. Сварка электрозаклепок возможна вольфрамовым электродом на углеродистых, коррозионно-стойких сталях и титановых сплавах. Из-за недостаточной очистки поверхности алюминиевых сплавов катодным распылением их сварка этим способом затруднена.
Рис. 49. Типы газовых насадок для сварки электрозаклепок вольфрамовым электродом:
а и б — нахлесточные соединения; в и г — угловые соединения
Сварку можно выполнять в любом пространственном положении. Для получения хорошего провара и формирования головки заклепки соединение следует собирать с минимальным зазором между листами. Качество соединений и их механические свойства зависят главным образом от силы сварочного тока, времени горения дуги и ее длины. Для регулирования времени горения дуги служат реле. При использовании в качестве защитного газа гелия диаметр заклепки получается больше, а глубина проплавления меньше, чем при использовании аргона.
Для вольфрамового электрода необходимы инертные газы, постоянный ток прямой полярности и специальной конструкции сварочные пистолеты, с помощью которых поджимают верхний лист к нижнему, закрепляют электрод, подводят сварочный ток и защитный газ. Хорошее качество заклепок достигается при толщине верхнего листа до 2 мы. Во избежание загрязнения электрода дугу возбуждают с помощью осциллятора, который автоматически отключается.
При увеличении силы сварочного тока при сварке листов равной толщины обычно увеличивается диаметр заклепки. Если нижний лист имеет большую толщину, растет и глубина проплавления. То нее наблюдается и при увеличении времени горения дуги. Для обеспечения хорошей защиты зоны сварки применяют различные типы газовых сопл-насадок (рис. 49). Для предупреждения образования подрезов, трещин и пор в заклепке, вызванных высокой скоростью кристаллизации металла, применяют повторное кратковременное возбуждение дуги или плавное уменьшение сварочного тока. При применении плавящегося электрода шов образуется за счет проплавления основного металла и расплавления электродной проволоки диаметром до 2 мм. Сварку можно выполнять с предварительной пробивкой отверстия в верхнем листе или без него. Благодаря большей глубине проплавлення при сварке в углекислом газе, чем под флюсом, без пробивки отверстия можно сваривать соединения с толщиной верхнего листа до 8 мм. Сварку выполняют при несколько повышенном па - пряжении дуги на обычных полуавтоматах, снабженных специаль-
тгыми насадками для опирания держателя на поверхность изделия. Для сварки используют постоянный ток обратной полярности. Возможна также сварка алюминия и его сплавов.
Техника сварки стыков труб. Сварка стыков труб в поворотном положении вручную или механизированно не представляет значительных трудностей - Однако швы выполняются только с одной наружной стороны, что препятствует провару корпя шва и формированию обратного валика на весу без применения специальных приспособлений.
Применение при автоматической сварке поперечных колебаний электрода значительно облегчает провар корня шва и формирование швов в последующих проходах. Амплитуда и частота поперечных колебаний электрода зависят от ширины разделки и параметров режима. Сборку труб под сварку осуществляют в специальных центраторах или на прихватках. При сварке вольфрамовым электродом прихватки выполняют длиной до 15 мм обычно без присадочной проволоки за счет оплавления кромок. При сварке прихватки следует полностью переваривать. Для предупреждения вытекания расплавленного металла из сварочной ванны электрод смещают с зенита навстречу вращению труб. Величина смещения зависит от диаметра труб и режима сварки.
Сварку неповоротных стыков труб осуществляют в различных пространственных положениях. Ручную сварку вольфрамовым электродом выполняют без разделки или с V-образной разделкой кромок, используя присадочную проволоку диаметром 1,2—3 мм. Трубы с толщиной стенки до 1,5 мм сваривают в один проход, при большей толщине — в несколько проходов. Сварку труб диаметром 108 мм и выше следует выполнять вразброс. При толщине стенки более 8 мм возможно применение комбинированного способа — первый проход вручную вольфрамовым электродом, а остальные полуавтоматически или автоматически плавящимся электродом. Полуавтоматическую сварку неповоротных стыков труб в практике не применяют.
Автоматическую сварку вольфрамовым электродом выполняют различными способами. Трубы диаметром 8—26 мм с толщиной стенки 1—2 мм можно сваривать без разделки кромок и без присадочной проволоки. Однако в процессе сварки наблюдается постепенное увеличение ширины шва и глубины проплавления ввиду разогрева трубы. Поэтому необходимо изменять в процессе сварки ее скорость — использовать установки с программированием скорости сварки. Однако и в этом случае шов практически не имеет усиления.
При сварке методом «автоопрессовки» получение усиления достигается за счет пластической деформации нагретого металла в направлении, перпендикулярном оси трубы, при многократном нагреве металла в месте стыка. Этим способом можно сваривать трубы из металла с большим коэффициентом линейного расширения. Сварку первого слоя рекомендуется выполнять короткой
дугой длиной до 1,2 мм на максимально возможной скорости для получения узких швов с неполным проваром. Остальные три - пять проходов выполняют для получения усиления шва.
с; |
Рис. 50. Подготовка стыков труб для сварки вольфрамовым электродом в среде защитных газов |
Этим способом сваривают трубы диаметром 20—57 мм с толщиной стенки 2—3,5 мм. Трубы диаметром 8—26 мм с толщиной стенки 1—2,5 мм можно сваривать с подготовкой кромок с присадочным выступом (рис. 50, а), создаваемым путем раскатки торца трубы. Усиление шва создается благодаря расплавлению металла присадочного выступа. Сварку обычно выполняют за один проход. Трубы большого диаметра и с большей толщиной стенки сваривают, используя расплавляющееся подкладное кольцо (рис. 50, б), служащее для хорошего формирования обратного валика. Первый проход выполняют без присадочной проволоки. При этом следят за полным расплавлением подкладного кольца и прилегающей части кромок. Последующие проходы выполняют с присадочной проволокой или плавящимся электродом.
При всех этих способах для улучшения формирования обратного валика используют поддув защитного газа с обратной стороны или заполнение им части труб, ограниченной заглушками различной конструкции. Более ограниченное применение в практике находит сварка неповоротных стыков труб плавящимся электродом. Это вызвано трудностью получения хорошего провара корня шва и формирования обратного валика. Обычно сварку ведут с поперечными колебаниями электрода или без колебаний и без скоса кромок по щелевому зазору определенного размера.