РАЗРАБОТКА ПЬЕЗОМЕТРИЧЕСКОГО ГРАФИКА ПРИ СЛОЖНОМ РЕЛЬЕФЕ МЕСТНОСТИ И ПРОТЯЖЕННЫХ ТЕПЛОВЫХ СЕТЯХ
Пьезометрический график разрабатывают для двух режимов. Во - первых, для статического режима, когда в системе теплоснабжения отсутствует циркуляция воды. Считают, что система заполнена водой с температурой 100°С, тем самым исключается необходимость поддержания избыточного давления в теплопроводах во избежание вскипания теплоносителя. Во-вторых, для гидродинамического режима — при наличии циркуляции теплоносителя в системе.
З |
5 |
Разработку графика начинают со статического режима. Первоначально изыскивают возможность такого расположения на графике линии полного статического давления, чтобы всех абонентов можно было присоединить к тепловой сети по зависимой схеме. Для этого статическое давление не должно превышать допустимого из условия прочности абонентских установок и должно обеспечивать заполнение водой мест-' ных систем. Наличие общей статической зоны для всей системы теплоснабжения упрощает ее эксплуатацию и повышает ее надежность. Установить единый уровень статического давления удается лишь при спокойном рельефе местности теплоснабжаемого района. При наличии значительной разности геодезических отметок земли установление общей
статической зоны оказывается невозможным по следующим причинам. Наинизшее положение уровня статического давления определяется из условий заполнения водой местных систем и обеспечения в верхних точках систем наиболее высоких зданий, расположенных в зоне наибольших геодезических отметок, избыточного давления не менее 0,05 МПа. Такое давление оказывается недопустимо высоким для зданий, расположенных в той части района, который имеет наиболее низкие геодезические отметки. При таких условиях возникает необходимость разделения системы теплоснабжения на две статические зоны. Одна зона для части теплоснабжаемого района с низкими геодезическими отметками, другая — с высокими.
На рис. 8 9 показаны пьезометрический график и принципиальная схема системы теплоснабжения района, имеющего значительную разность геодезических отметок уровня земли (40 м). Часть района, прилегающая к источнику теплоснабжения, имеет нулевые геодезические отметки, в периферийной части района отметки составляют 40 м. Высота зданий 30 и 45 м. Для возможности заполнения водой систем отопления зданий III я IV, расположенных на отметке 40 м и создания в верхних точках систем избыточного напора в 5 м уровень полного статического напора должен быть расположен на отметке 75 м (линия S2— S2). В этом случае статический напор будет равен 35 м. Однако напор в 75 м недопустим для зданий I и II, расположенных на нулевой отметке Для них допустимое наивысшее положение уровня полного статическогр
А — пьезометрический график, б — принципиальная схема системы теплоснабжения, Si — Si — линия полного статического напора нижней зоны, S2 — S2 — линия полного статического напора верхней зоны, Я —напор, развиваемый подпиточным насосом нижней зоны, Я „ —напор, п н1 п HZ Развиваемый подпиточным насосом верхней зоны, Я рддс~~ нап°Р> на который настроены регу- |
Ляторы РДДС (10) и РД2 (9), ДЯ 0 пґ,—напор, срабатываемый на клапане регулятора РДДС
При гидродинамическом режиме, I—IV — абоненты, / — бак подпиточной воды, 2, 3 — подпиточный насос н регулятор подпитки нижней зоны, 4 — предвключенный насос, 5 — теплофикационные пароводяные подогреватели, 6 — сетевой насос, 7 — пиковый водогрейный котел, 8, 9 — подпиточный насос и регулятор подпитки верхней зоны, 10 — регулятор давления «до себя» РДДС 11 - обратный клапан давления соответствует отметке 60 м. Таким образом, в рассматриваемых условиях установить общую статическую зону для всей системы теплоснабжения нельзя.
Возможным решением является разделение системы теплоснабжения на две зоны с различными уровнями полных статических напоров — на нижнюю с уровнем в 50 м (линия 5] —Si) и верхнюю с уровнем в 75 м (линия S2—S2). При таком решении всех потребителей можно присоединить к системе теплоснабжения по зависимой схеме, так как статические напоры в нижней и верхней зонах находятся в допустимых границах. .
Чтобы при прекращении циркуляции воды в системе уровни статических давлений установились в соответствии с принятыми двумя зрнами, в месте их соединения располагают разделительное устройство (см. рис. 8.9, б). Это устройство защищает тепловую сеть от повышенного давления при остановке циркуляционных насосов, автоматически рассекая ее на две гидравлически независимые зоны: верхнюю и нижнюю.
При остановке циркуляционных насосов падение давления в обратном трубопроводе верхней зоны предотвращает регулятор давления «до себя» РДДС 10, поддерживающий постоянным заданный напор Ярддс в точке отбора импульса. При падении давления он закрывается. Падение давления в подающей линии предотвращает установленный на ней обратный клапан 11, который также закрывается. Таким образом, РДДС и обратный клапан рассекают теплосеть на две зоны. Для подпитки верхней зоны установлены подпиточный насос 8, который забирает воду из'нижней зоны и подает б верхнюю, и регулятор подпитки 9. Напор, развиваемый насосом, равен разности гидростатических напоров верхней и нижней зон. Подпитку нижней зоны оссуществляет подпиточный насос 2 и регулятор подпитки 3.
Регулятор РДДС настроен на напор Ярддс (см. рис. 8.9, а). Ha этот же напор настроен регулятор подпитки РД2.
При гидродинамическом режиме регулятор РДДС поддерживает напор на том же уровне. В начале сети подпиточный насос с регулятором поддерживают напор Hoi. Разность этих напоров тратится на преодоление гидравлических сопротивлений в обратном трубопроводе между разделительным устройством и циркуляционным насосом источника тепла, остальная часть напора срабатывается в дроссельной подстанции на клапане РДДС. На рис. 8.9, а эта часть напора показана величиной АЯрддс. Дроссельная подстанция при гидродинамическом режиме позволяет поддерживать давление в обратной линии верхней зоны не ниже принятого уровня статического давления S2 — S2.
Пьезометрические линии, соответствующие гидродинамическому режиму, показаны на рис. 8.9,а. Наибольшее давление в обратном трубопроводе у потребителя IV составляет 90—40 = 50 м, что допустимо. На пор в обратной линии нижней зоны также находится в допустимых границах.
В подающем трубопроводе максимальный напор после источника тепла равен 160 м, что не превышает допустимого из условия прочности* труб. Минимальный пьезометрический напор в подающем трубопроводе 110 м, что обеспечивает невскипание высокотемпературного теплоносителя, так как при расчетной температуре 150°С минимальное допустимое давление равно 40 м.
Таким образом, разработанный для статического и гидродинамического режимов пьезометрический график обеспечивает возможность присоединения всех абонентов по зависимой схеме.
Другим возможным решением гидростатического режима системы теплоснабжения, показанной на рис. 8.9, является присоединение часта абонентов по независимой схеме. Здесь могут быть два варианта. Первый вариант — установить общий уровень статического давления на от-
метке 50 м (линия Si — Si), а здания, расположенные на верхних геодезических отметках, присоединить по независимой схеме. В этом случае статический напор в водоводяных отопительных подогревателях зданий верхней зоны со стороны греющего теплоносителя составит 50—40= = 10 м, а со стороны нагреваемого теплоносителя определится высотой зданий. Второй вариант — установить общий уровень статического давления на отметке 75 м (линия S2 — Ss) с присоединением зданий верхней зоны по зависимой схеме, а зданий нижней зоны — по независимой. В этом случае статический напор в водоводяных подогревателях со стороны греющего теплоносителя будет равен 75 м, т. е. меньше допустимой величины (100 м).
При спокойном рельефе местности, но большой протяженности тепловых сетей возникает необходимость в установке насосных подкачивающих подстанций на подающей и обратной линиях. Это связано с тем, что допустимые потери давления в подающем и обратном трубопроводах оказываются недостаточными для обеспечения оптимальных гидравлических уклонов, а их увеличение путем установки циркуляционных насосов, развивающих большие напоры, невозможно из условия прочности трубопроводов и оборудования. При установке подкачивающих подстанций по трассе тепловой сети увеличивается общий напор насосов, обеспечивающий циркуляцию воды в системе, увеличиваются гидравлические уклоны при неизменном положении верхней и нижней границ напоров в подающем и обратном трубопроводах. Установка подкачивающих подстанций позволяет также увеличить пропускную способность действующей системы теплоснабжения.
На рис. 8.10 вверху приведен пьезометрический график тепловой сети большой протяженности, а внизу показано расположение источника тепла, трубопроводов и подкачивающих станций. Если при сохранении нагрузки тепловой сети и уклонов пьезометрических линий ограничиться только установкой циркуляционных насосов на станции, тогда они должны развивать напор 140+40 + 40 = 220 м. Максимальный пьезометрический напор в начале сети составит 210 м, что недопустимо из условия прочности трубопроводов. Такой пьезометрический график показан на рис. 8.10 пунктиром. Напор в обратной линии в конце магистрали составляет 100 м, что не позволяет присоединять потребителей по зависимой схеме. Этот напор является предельным при независимом при-
Рис. 8.10. Пьезометрический гра. фик тепловой сети большой протяженности
1 — источник тепла;
2 — место расположения подкачивающих насосов на подающем и обратном теплопроводах; 3 — концевой абонент; S — S — линия полного статического напора; #„, Н Н,
Н п. и н. п
—напоры, развиваемые насосами: сетевым, подпиточным, подкачивающим на подающей линии, подкачивающим на обратной линии;
И3 — высота зданий
соединении. При установке насосных подстанций напор циркуляционного* насоса источника тепла снижается до 140 м, а максимальный напор в начале сети до 130 м, т. е. до допустимого. При этом снижение напора в подающем трубопроводе между источником тепла и насосной подстанцией не вызывает недопустимого снижения напора в концевой части сети. Подкачивающие насосы повышают в этой зоне напор с 80 до 120 м. В результате такого решения напор в подающем трубопроводе изменяется в пределах от 80 до 130 м.
Подстанция на обратной линии снижает давление в концевой части сети между подстанцией и абонентом 3. В этой зоне напор в обратной линии не превышает допустимой величины в 60 м.
Таким образом, в результате установки подкачивающих насосных подстанций на тепловой сети большой протяженности удается выдержать расположение пьезометрических линий как в подающем, так и в обратном трубопроводах в допустимых границах при сохранении экономически обоснованного удельного падения давления.
В случае понижения рельефа местности от источника тепла существенно возрастает давление в обратной линии периферийной зоны района и оно может выйти за допустимые границы. Для снижения давления в этой части обратной линии на ней устанавливают подкачивающую насосную подстанцию. Такой случай показан на рис. 8.11. Если не устанавливать насосной подстанции на обратной линии, тогда напор у концевого абонента 3 будет равен 60 + 30 = 90 м, что не позволит осуществить зависимое присоединение. Пьезометрические линии подающего и обратного теплопроводов для системы б. ез подкачивающей подстанции при развиваемом циркуляционным насосом напоре 130 + 30=160 м показаны на рис. 8.11 пунктиром. Максимальный напор в подающей линии оказывается равным 140+30=170 м, т. е. превышает допустимый (160 м). В результате установки на обратном теплопроводе подкачивающих насосов пьезометрическая линия подающего теплопровода эквидистантно опускается на 30 м, а давление в Обратном теплопроводе между насосной подстанцией и концевым абонентом оказывается в зоне
Тепла рельефе местности 1 — источник тепла, 2 — место расположения подкачивающего иасоса на обратном теплопроводе; 3 — концевой абонент, S—5—линия полного статического напора, Н, Н, Н — напоры* Н ПН чн.0 Развиваемые сетевым, подпиточным и подкачивающим насосом на обратной линии |
Л) Рис. 8 12. Пьезометрический график тепловой сети при значительно снижающемся рельефе местности от источника тепла и разделении системы на две статические зоны л — пьезометрический график, б—принципиальная схема системы теплоснабжения; /—IV — абоненты; Si — Si — линия полного статического напора в верхней зоне; S2 — Sj — линия полного Статического напора в нижней зоне; 1 — автомат рассечки; 2 — подкачивающий насос; 3 — регулятор подпитки Нижней зоны |
Лить систему на две статические зоны: верхнюю вблизи источника и нижнюю на дериферии. Такой случай показан на рис. 8.12. Чтобы снизить давление в обратной линии в концевой части магистрали в точке М установлена насосная подкачивающая подстанция. Насосы развивают напор в 40 м. Это позволяет снизить напор, развиваемый сетевыми насосами, до 85 м и соответственно снизить давление в подающей линии.
Тепловая сеть разделена на две статические зоны: верхнюю вблизи источника тепла с пьезометрическим напором в 50 м и нижнюю в периферийной части сети с пьезометрическим напором в 50 м. Для разделения сети при остановке насосов на две статические зоны на подающей линии установлен автомат рассечки 1, а на обратной линии — обратный клапан. При остановке насосов давление в трубопроводах начинает выравниваться и растет давление в обратном трубопроводе на участке от насосной подстанции до концевой точки IV. Рост давления передается по импульсной трубке к регулятору, управляющему клапаном рассечки, клапан закрывается и гидравлически разобщает подающую линию на две зоны. Переток воды из верхней зоны в нижнюю предотвращает обратный клапан, установленный на обратной линии. В результате при статическом режиме сеть будет разделена на две зоны с уровнями Si — Si и S2 — 52.
Поддержание статического уровня верхней зоны обеспечивает под - питочное устройство источника тепла. Поддержание статического уровня нижней зоны обеспечивает двухимпульсный дроссельный клапан 3. Основным импульсом является давление в обратной линии, разрешающим — давление в подающей линии нижней зоны.