Теория электропривода

Законы частотного регулирования

При выборе соотношения между частотой и напряжением, подводимым к статору АД, чаще всего исходят из условия сохранения перегрузочной способности двигателя для любой из его регулировочных механических характери­стик. Основной закон частотного регулирования (закон Костенко), известный ещё из курса электрических машин, в математической форме имеет вид

Законы частотного регулирования , где

МС и М’C - статические моменты сопротивления соответствующие ско­рости двигателя при частотах f1 и f’1.

U1 и U’1 - соответствующие частотам f1 и f’1 напряжения.

В относительных единицах этот закон запишется так:

Законы частотного регулирования , где Законы частотного регулирования

Из него следует, что закон изменения напряжения определяется не только частотой источника питания, но и характером изменения момента сопро­тивления механизма на валу двигателя при изменении угловой скорости.

Согласно формуле Бланка Законы частотного регулирования

Или в относительных единицах Законы частотного регулирования

Учитывая, что Законы частотного регулирования , а Законы частотного регулирования , можно написать

Законы частотного регулирования

Тогда основной закон после подстановки в формулу Законы частотного регулирования

Значения mC , будет иметь вид: Законы частотного регулирования

При постоянном моменте на валу двигателя МС

(следовательно и mС ) не зависит от скорости, а значит и частоты. Поэтому х=0 и

Законы частотного регулирования Законы частотного регулирования или

Законы частотного регулирования , а в именованных единицах Законы частотного регулирования

Законы частотного регулированияПолученный закон – это закон пропорционального управления. Механические характеристики двигателя при этом законе изобра­жены на рисунке. Жесткость характеристик сохраняется сравнительно вы­сокой. Критический момент в зоне частот, близких к основной, практически остается неизменной. Однако при значи­тельном снижении чистоты (ниже 0,5f1H ) сопротивление Законы частотного регулирования становится соизмеримым по величине с сопротивлением r1 статора или даже меньше его. Влияние падения напряжения на r1 становится весьма заметным, к намагничивающей цепи двигателя подводится тем меньшее напряжение, чем меньше частота. Это вызывает уменьшение критического момента, следовательно, перегрузочной способ­ности двигателя.

Плавное регулирование до f1=0 при этом законе невозможно. Невозможно также обес­печить устойчивую работу двигателя при Мс=const в широком диапазоне регулирования частоты.

Закон пропорционального регулирования можно легко реализовать при разомкнутой системе, Этот закон целесообразен только для крупных АД, а для мелких, маломощных он малоэффективен, т. к. уже при j1<0,5 пе­регрузочная способность двигателя заметно снижается (у них большое r1). Потери в двигателе больше, чем при основном законе.

При идеальном вентиляторном моменте сопротивления x=2 , m0=0 и

Законы частотного регулирования × Законы частотного регулирования или Законы частотного регулирования

Законы частотного регулированияМеханические характеристики при этом законе изображены на рис. При постоянной мощности статической нагрузки РС=const Законы частотного регулирования или Законы частотного регулирования : В этом случае Х=-1 Приняв m0=0, получим закон управления

Законы частотного регулирования или Законы частотного регулирования

Механические характеристики при этом законе имеют вид, изображенный на Законы частотного регулированияРисунке. Возможны также законы, обеспечивающие постоянство потокосцеплений статора y1=yS=const, ротора y2=yr=const, взаимного потокосцепления статора и ротора ym=const. Возможен закон поддержания относительной частоты тока ротора (j2=const), абсолютной частоты тока ротора (f2=const), закон управления по ЭДС и мо­менту

Законы частотного регулирования или Законы частотного регулирования

Теория электропривода

Частотно регулируемый электропривод

Производим и продаем частотные преобразователи: Цены на преобразователи частоты(21.01.16г.): Частотники одна фаза в три: Модель Мощность Цена CFM110 0.25кВт 2300грн CFM110 0.37кВт 2400грн CFM110 0.55кВт 2500грн CFM210 1,0 кВт 3200грн …

Переходные процессы при пуске и торможении электропривода с короткозамкнутым Асинхронным двигателем (АД)

В большинстве случаев к. з. АД питается от сети с U1=const и f1=const. Поэтому нелинейность их механических характеристик проявляется полностью как в режимах пуска, так и торможения. Магнитный поток в …

Переходный процесс электропривода с двигателем независимого возбуждения при из­менении магнитного потока

Обычно ДНВ работает при Ф=Фн если U=const или U=var. Необходимость ослабления по­тока возникает когда требуется получить скорость, превышающую основную (согласно тре­бованиям технологического процесса ). Если бы поток изменялся мгновенно, то …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.