СВАРКА, РЕЗКА И ПАЙКА МЕТАЛЛОВ
ГАЗОКИСЛОРОДНЫЕ РЕЗАКИ (ГОРЕЛКИ ДЛЯ КИСЛОРОДНОЙ РЕЗКИ)
В газокислородном резаке конструктивно объединены части: подогревательная и собственно режущая. Подогревательная часть газокислородного резака по принципу устройства, конструкции и методам расчёта аналогична сварочным горелкам. В зависимости от давления горючего газа подогревательная часть может быть инжекторной или безинжекторной. Инжектор необходим при пользовании ацетиленом низкого или среднего давления. При ацетилене высо-
Фиг. 221. Расположение выходных каналов газокислородного резака: а — канал подогревательной смеси; б — канал режущего кислорода; 1 — концентрическое расположение сопел; 2 —- последовательное расположение сопел. |
кого давления и других горючих газах, подаваемых под достаточ - ным давлением, можно пользоваться резаками с безинжекторным подогревательным устройством. В промышленности обычно пользуются резаками с инжекторным подогревательным устройством, независимо от давления применяемого горючего газа.
Относительное расположение каналов для режущего кислорода и подогревательного пламени показано на фиг. 221. Последовательное расположение отверстий для режущего кислорода и подогревательного пламени в настоящее время применяется редко, оно пригодно лишь для резки в одном направлении, впереди должно находиться подогревательное пламя, а за ним следует струя режущего кислорода. При изменении направления резки на противоположное режущий кислород попадает на недостаточно подогретый металл и процесс резки прекращается. Значительно удобнее концентрическое расположение выходных отверстий для смеси подогревательного пламени и для режущей струи кислорода.
В резаках с концентрическим расположением выходных отверстий подогревательное пламя получает форму огненной трубки, по оси которой располагается режущая струя кислорода. Устройство с кольцевой щелью наиболее распространено в кислородных резаках малой и средней мощности, изготовляемых нашей промышленностью. Для мощных резаков кольцевая щель не даёт пламени достаточной мощности, увеличение ширины щели делает пламя неустойчивым и ведёт к обратным ударам. Поэтому для резаков средней и большой мощности рекомендуется подавать подогревательную смесь через отверстия круглого сечения, расположенные концентрически вокруг отверстия для режущего кислорода в один или два ряда.
Резаки с концентрическим расположением выходных отверстий позволяют вести резку в любом направлении; струя режущего кислорода попадает всегда на достаточно подогретый металл, что весьма удобно, а для фигурной резки, когда направление реза значительно меняется, необходимо. Поэтому в настоящее время применяются почти исключительно резаки с концентрическим расположением отверстий, а резаки с последовательным расположением отверстий почти вышли из употребления.
Мощность подогревательного пламени выбирается в соответствии с толщиной разрезаемого металла. Обычно для расчётов принимают, что 85% необходимого тепла для процесса резки получается в результате реакции сгорания железа в кислороде, а остальные 15% даёт подогревательное пламя. При конструировании резака следует обеспечить необходимую длину подогревательного пламени для того, чтобы оно могло подогревать нижележащие слои металла. В мощных резаках для резки стали больших толщин приходится применять подогревательное пламя свыше метра длиной. Длина пламени зависит от применяемого горючего газа, именно от скорости его сгорания. Быстро сгорающие газы, например ацетилен, дают короткое пламя. Газы, горящие медленнее, дают пламя более длинное; особенно длинное пламя даёт водород, которой поэтому иногда и применяется в резке металла больших толщин. Достаточно длинное пламя дают также метан, природный газ. Пламя регулируется на максимальную температуру, а поэтому имеет обычно избыток кислорода по сравнению с пламенем, применяемым для сварки.
Важное значение имеет устройство внутреннего канала режущего мундштука или сопла для режущего кислорода. До настоящего времени теоретическая часть этого вопроса плохо разработана. Обычно в нашей промышленности применяются сопла цилиндрическое или ступенчато-цилиндрическое (фиг. 222). При этих соплах приходится пользоваться кислородом довольно высокого давления, причём необходимое давление быстро возрастает с толщиной разрезаемого металла.
Для резки стали необходимо иметь достаточно мощную струю кислорода, обеспечивающую требующуюся скорость сжигания металла. Струя на всю толщину разрезаемого металла должна быть по возможности цилиндрической с минимальным уширением для обеспечения постоянной ширины реза по всей толщине металла. Для успешного сдувания расплавленного шлака и доступа к поверхности металла скорость кислорода в струе должна быть достаточно высокой, как показывает опыт порядка 500—700 м/сек, т. е. скорость должна быть сверхзвуковой.
Фиг. 222. Сопла режущего кислорода: а — ступенчатоцилиндрическое; б — цилиндрическое. |
Цилиндрические сопла обладают низким к. п. д., и для получения необходимой скорости истечения кислорода и нужной длины цилиндрической части струи приходится прибегать к довольно высокому давлению кислорода, поступающего в резак, причём это давление быстро растёт с увеличением толщины разрезаемого металла. В настоящее время, на основе достижении газодинамики, ведётся работа по усовершенствованию формы сопел режущего кислорода.
.Сопла с криволинейными образующими дают значительно лучшие результаты, как показали исследования в лаборатории автора, проведённые инженером М. М. Борт. Улучшение работы сопла прежде всего проявляется в понижении рабочего давления режущего кислорода на входе в резак. Единственным обоснованием применения цилиндрических сопел в настоящее время может являться лишь простота их изготовления.
Несовершенство цилиндрических сопел особенно сказывается при резке стали больших толщин.
Необходимое давление режущего кислорода уже для толщины 200 мм достигает 10 атм, а для толщины 400—500 мм доходит до 20—25 атм, что является фактически пределом для цилиндрических сопел.
Для подачи кислорода высокого давления требуются специальные бронированные шланги, кислород выходит из сопла при давлении выше атмосферного и продолжает расширяться в струе, придавая ей расширяющуюся коническую форму. Значительное уменьшение давления охлаждает кислород, вследствие дросселирующего эффекта, и замедляет резку. Поэтому толщина 400—500 мм для цилиндрических сопел может считаться предельной, так как дальнейшее повышение давления режущего кислорода делает резку практически невозможной.
В мощных кислородных резках кислород режущий и кислород для подогревательного пламени подводят по отдельным шлангам, поэтому к резаку подходят три шланга: два кислородных и один ацетиленовый. Малые и средние резаки обычно изготовляются двухшланговыми, кислород подводится одним общим шлангом и уже в самом резаке распределяется на режущее сопло и на питание подогревательного пламени.
Нашей промышленностью изготовляются несколько типов кисло
родных резаков для ручной резки различного назначения, а также специальные резаки для установки на газорежущих машинах.
На фиг. 223 показан широко распространённый в нашей промышленности резак УР, который состоит из рукоятки 1, кислородной трубки 2, ацетиленовой трубки 3; трёх вентилей: режущего кислорода 4, подогревательного кислорода 5 и ацетилена 6.
Резак может работать на ацетилене как высокого, так и низкого давления, для чего предусмотрен инжектор 7, расположенный перед смесительной камерой 8. Режущий кислород поступает к головке 9 с мундштуками 10 и 11. Технические данные резака УР приведены в табл 31.
Таблица 31
Технические данные кислородного резака УР
|
Применяется также специальный вставной режущий наконечник к сварочной горелке СУ, показанный на фиг. 224. Наконечник состоит из инжектора 1, смесительной камеры 2, вентиля режущего кислорода 3, кислородной трубки 4 и головки 5 с мундштуками.
Наибольшая толщина разрезаемой стали 100 мм. Как уже было упомянуто, применение ацетилена для газокислородной резки необязательно, во многих случаях не только возможно, но и жела-
тельно заменять ацетилен другими, более дешёвыми и менее дефицитными горючими газами. Ацетилен даёт слишком высокую температуру подогревательного пламени, что часто ведёт к оплав
лению кромок; сверх того, ацетилен при неточной регулировке подогревательного пламени науглероживает кромки реза, что делает их способными к закалке и затрудняет последующую механическую обработку.
Замена ацетилена другим горючим газом не требует большой переделки резака, рассчитанного для работы на ацетилене. В большинстве случаев требуется лишь некоторое увеличение подачи подогревательной смеси, для чего меняется или несколько растачивается наружный подогревательный мундштук. С широким развитием газификации весьма целесообразен перевод резки на природ
ный газ, представляющий собой обычно почти чистый метан, хорошо удовлетворяющий требованиям резки.
Резка может успешно производиться и на жидких горючих. В нашей промышленности широко известны бензорезы и керосинорезы. Бензорез или керосинорез, изготовляемый нашей промышленностью,
Фиг. 226. Бак для горючего. |
состоит из специального резака (фиг. 225) и бака для горючего (фиг. 226).
Резак инжекторного типа состоит из вентиля 2 для подогревательного кислорода, вентиля И для регулировки подачи горючего, испарителя 8, инжектора 12, головки 15 со сменными мундштуками 6 и 13, подогревательного мундштука 5 для испарения горючего, ниппеля 3' для кислорода и ниппеля 1 для горючего.
Кислород, поступивший в резак, разветвляется на две части. Подогревательный кислород поступает в трубку 10, находящуюся внутри трубки 7. Трубка 10 обмотана асбестом, заполняющим трубку 7 и впитывающим горючее; к концу трубки 10 припаян инжектор 12, Горючее - поступает в трубку 4, далее в трубку 7 и по асбестовой оплётке — в испаритель 8, где испаряется пламенем подогревателя 5. Режущий кислород через вентиль 9 и трубку 14 идёт к режущему мундштуку 13.
Бак для горючего (фиг. 226) состоит из резервуара 1, ручного нагнетательного воздушного насоса 2, предохранительного клапана 3, отводящей трубки 4, запорного вентиля 5, ниппеля для присоединения шланга 6. Главной особенностью бензореза является наличие испарительной камеры, в которой горючее превращается в пары, поступающие в камеру смешения, где они образуют горючую смесь с подогревательным кислородом для питания подогревающего пламени.
Технические данные резака, работающего на жидком горючем, приведены в табл. 32. Также изготовляются специальные резаки для различных назначений, например, для срезки заклёпочных головок.
для вырезки жаровых труб в паровых котлах, для вырезки круглых отверстий малого диаметра, например под сборочные болты и заклёпки, для строжки и поверхностной обработки металла и т. д.
Таблица 32
Технические данные кислородного резака, работающего на жидком горючем
|