Свойства бетона
Деформативные свойства бетона
Под нагрузкой бетон ведет себя иначе, чем сталь и другие упругие материалы. Конгломератная структура бетона определяет его поведение при возрастающей нагрузке осевого сжатия.
Область условно упругой работы бетона — от начала нагружения до напряжения сжатия, при котором по поверхности сцепления цементного камня с заполнителем образуются микротрещины.
Опыты подтвердили, что при небольших напряжениях и кратковременном нагружении для бетона характерна упругая деформация, подобная деформации пружины. Если напряжение превосходит 0,2 от предела прочности, то наблюдается заметная остаточная (пласти-
268
ческая) деформация, и полную деформацию бетона можно представить как сумму упругой и пластической деформации (єу
'УПР + £ПЛ )• |
Рис. 10.12. Графики зависимости модуля упругости бетона от его марки: 1 — тяжелый бетон; 2 — легкий бетон на пористом заполнителе; 3 — ячеистый бетон |
05 a 5 І-Ї' 5 с» £ « ч X в И vS |
Модуль упругости бетона возрастает при увеличении прочности и зависит от пористости: увеличение пористости бетона сопровождается снижением модуля упругости (рис.
10.12) . При одинаковой марке по прочности модуль упругости легкого бетона на пористом заполнителе меньше в 1,7—
Марка бетона |
2,5 раза тяжелого. Еще ниже модуль упругости ячеистого бетона. Таким образом, упругими свойствами бетона можно управлять, регулируя его структуру. Модуль упругости бетона на сжатии и растяжении принимают равными между собой: Есж =ЕР =Е6.
Рис. 10.13. Развитие ползучести бетона во времени |
Ползучестью называют явление увеличения деформаций бетона во времени при действии постоянной статической нагрузки (рис.
100 200 300 400 500 600 Врем, сут |
10.13) . Таким образом, полная относительная деформация бетона при длительном действии нагрузки слагается из его начальной («мгновенной») упругой деформации и пластической деформации ползучести.
Ползучесть зависит от вида цемента и заполнителей, состава бетона, его возраста, условий твердения и влажности. Меньшая ползучесть наблюдается при применении высокомарочных цементов и плотного заполнителя-щебня из изверженных горных пород. Пористый заполнитель усиливает ползучесть, поэтому легкие бетоны име
ют большую ползучесть по сравнению с тяжелыми. С увеличением В/Ц ползучесть бетона при прочих равных условиях возрастает, так как цементный гель становится менее вязким, а бетон — более пористым. При одинаковом В/Ц большая ползучесть наблюдается у бетона с более высоким содержанием цемента. В бетоне, нагруженном в раннем возрасте, проявляется гораздо большая ползучесть, чем в позднем возрасте.
На ползучести сказывается климат: замечено ее усиление в теплом и сухом воздухе. Преждевременное высыхание бетона ухудшает структуру и увеличивает его ползучесть. Однако насыщение водой затвердевшего бетона может также вызывать рост ползучести.
Ползучесть и связанная с ней релаксация напряжений может играть отрицательную роль. Например, ползучесть бетона приводит к потере натяжения в предварительно напряженных железобетонных конструкциях.
Усадка и набухание бетона
При твердении на воздухе происходит усадка бетона, т. е. бетон сжимается и линейные размеры бетонных элементов сокращаются. Усадка слагается из влажностной, карбонизационной и контракци - онной составляющих. Влажностная усадка вызывается изменением распределения, перемещением и испарением влаги в образовавшемся скелете цементного камня. Эта составляющая играет ведущую роль в суммарной усадке бетона. Карбонизация содержащегося в цементном камне гидрата окиси кальция с переходом его в углекислый кальций также вызывает усадку, особенно заметную в ячеистых бетонах. Обычные измерения дают общую величину усадки бетона, слагающуюся из влажностной и карбонизационной составляющих. Контракционная составляющая усадки, вызванная уменьшением абсолютного объема системы цемент-вода, невелика и составляет всего около 10% от влажностной усадки.
Вследствие усадки бетона в железобетонных и бетонных конструкциях возникают усадочные напряжения, поэтому сооружения большой протяженности разрезают усадочными швами во избежание появления трещин. Ведь при усадке бетона 0,3 мм/м в сооружении длиной 30 м общая усадка составляет около 10 мм. Массивный бетон высыхает снаружи, а внутри он еще долго остается влажным. Неравномерная усадка вызывает растягивающие напряжения в на
ружных слоях конструкции и появление внутренних трещин на контакте с заполнителем и в самом цементном камне.
Время твердения, сут О 30 60 90 Рис. 10.14. Кривые усадки: 1 — цементного камня; 2 — раствора; |
Для снижения усадочных напряжений и сохранения монолитности конструкций стремятся уменьшить усадку бетона. Наибольшую усадку имеет цементный камень. Введение заполнителя уменьшает количество вяжущего в единице объема материала, при этом образуется своеобразный каркас из зерен заполнителя, препятствующий усадке. Поэтому усадка цементного раствора и бетона меньше, чем цементного камня (рис. 10.14).
Бетон наружных частей гидротехнических сооружений, цементно-бетонных дорог периодически увлажняется и высыхает. Колебания влажности бетона вызывают попеременные деформации усадки и набухания, которые могут вызвать появление микротрещин и разрушение бетона. 3 — бетона
Морозостойкость бетона
Морозостойкость бетона определяют путем попеременного замораживания в холодильной камере при температуре от;17 до 20 °С и оттаивания в воде при температуре 15—20 °С бетонных образцов кубов с размерами ребра 10, 15 или 20 см (в зависимости от наибольшей крупности заполнителя). Образцы испытывают после 28 сут выдерживания в камере нормального твердения или через 7 сут после тепловой обработки. Контрольные образцы, предназначенные для испытания на сжатие в эквивалентном возрасте, хранят в камере нормального твердения.
За марку бетона по морозостойкости принимают наибольшее число циклов попеременного замораживания и оттаивания, которое при испытании выдерживают образцы установленных размеров без снижения прочности на сжатие более 5% по сравнению с прочностью образцов, испытанных в эквивалентном возрасте, а для дорожно
го бетона, кроме того, без потери массы более 5%. Установлены марки по морозостойкости: F50, F75, F100, F150, F200, F300, F400, F500, F600, F800, F1000.
Морозостойкость бетона зависит от качества примененных материалов и капиллярной пористости бетона. Объем капиллярных пор оказывает решающее влияние на водопроницаемость и морозостойкость бетона. Морозостойкость бетона значительно возрастает, когда капиллярная пористость менее 7%.
Водонепроницаемость бетона
По водонепроницаемости бетон делят на марки W2, W4, W6, W8 и W12, W14, W16, W18, W20, причем марка обозначает давление воды (кгс/см2, при котором образец-цилиндр диаметром и высотой 15 см не пропускает воду в условиях стандартного испытания.
С уменьшением объема капиллярных макропор снижается водонепроницаемость и одновременно повышается морозостойкость бетона. Для уменьшения водонепроницаемости в бетон при его изготовлении вводят уплотняющие (алюминат натрия) и гидрофобизи - рующие добавки. Нефтепродукты (бензин, керосин и др.) имеют меньшее, чем у воды, поверхностное натяжение, поэтому они легче проникают через обычный бетон. Для снижения фильтрации нефтепродуктов в бетонную смесь можно вводить специальные добавки (хлорное железо и др.). Проницаемость бетона по отношению к воде и нефтепродуктам резко уменьшается, если вместо обычного портландцемента применяют расширяющийся.
Теплофизические свойства бетона
Теплопроводность — наиболее важная теплофизическая характеристика бетона, в особенности применяемого в ограждающих конструкциях зданий.
Теплопроводность тяжелого бетона в воздушно-сухом состоянии
1,75.. . 1,85 Вт/(м °С), т. е. она в 2-А раза больше, чем у легких бетонов (на пористых заполнителях и ячеистых). Высокая теплопроводность является недостатком тяжелого бетона. Панели наружных стен из тяжелого бетона изготавливают с внутренним слоем утеплителя.
Теплоемкость тяжелого бетона изменяется в узких пределах — 0,75-0,92 Вт/(м °С). Линейный коэффициент температурного расширения бетона составляет около 1010'6оС. Следовательно, при увеличении температуры на 50 °С расширение достигает примерно
272
0,5 мм/м. Во избежание растрескивания сооружения большой протяженности разрезают температурно-усадочными швами.
Крупный заполнитель и раствор, составляющие бетон, имеют различные коэффициенты температурного расширения и будут по - разному деформироваться при изменении температуры.
Большие колебания температуры (более 80 °С) смогут вызвать внутреннее растрескивание бетона вследствие различного теплового расширения крупного заполнителя и раствора. Характерные трещины распространяются по поверхности заполнителя, некоторые из них образуются в растворе, а иногда и в слабых зернах заполнителя. Внутреннее растрескивание можно предотвратить, если позаботиться о подборе составляющих бетона с близкими коэффициентами температурного расширения.
Поэтому важнейшим требованием к составу бетона является ограничение величины В/Ц в зависимости от условий работы бетона в той или иной зоне сооружения: для бетона М500 рекомендуется принимать В/Ц не более 0,4; М400 —- не более 0,45; МЗОО — не более 0,5; М200 — не более 0,55.
Рекомендуется применять сульфатостойкий портландцемент, являющийся одновременно и морозостойким. В этом цементе содержится лишь небольшое количество трехкальциевого алюмината (до 5%), снижающего морозостойкость. В него не вводят минеральные добавки (кроме гипса). Заполнители должны быть чистые: промытый кварцевый песок, щебень из плотных изверженных горных пород с водопоглощением не более 0,5% (по массе).
Для повышения морозостойкости и водонепроницаемости бетона применяют добавки поверхностно-активных веществ.