Строительные материалы и изделия
Гипсовые вяжущие вещества
Гипсовые вяжущие вещества делят на две группы: низкообжиговые и высокообжиговые.
• Низкообжиговые гипсовые вяжущие вещества получают при нагревании двухводного гипса CaS04-2H20 до температуры
150.. .160°С с частичной дегидратацией двуводного гипса и переводом его в полуводный гипс CaSO4-0,5H2O.
• Высокообжиговые (ангидритовые) вяжущие получают обжигом. двуводного гипса при более высокой температуре до 700... 1000°С с полной потерей химически связанной воды и образованием безводного сульфата кальция — ангидрита CaS04. К низкообжиговым относится строительный, формовочный и высокопрочный гипс, а к высокообжиговым — ангидритовый цемент и эстрих-гипс.
Сырьем для производства гипсовых вяжущих служат природ, ный гипсовый камень и природный ангидрид CaS04, а также отходы химической промышленности, содержащие двуводный ИЛИ безводный сернокислый кальций, например фосфогипс. Возможно применение гипсосодержащего природного сырья в виде сажи и глиногипса.
• Гипсовым вяжущим называют воздушное вяжущее вещество состоящее преимущественно из полуводного гипса и получаем путем тепловой обработки гипсового камня при температур
150.. .160°С. При этом двуводный гипс CaS04-2H20, содержа щийся в гипсовом камне, дегидратирует по уравнению
CaS04-2H20 = CaS04-0,5H20 + 1,5Н20
В этих условиях образуются мелкие кристаллы полуводного сернокислого кальция ^-модификации; такой гипс обладает повышенной водопотребностью (60...65% воды). Избыточная вода, т. е. сверхпотребная на гидратацию гипса (15%), испаряется, образуя поры, вследствие чего затвердевший гипс имеет высокую пористость (до 40%) и соответственно небольшую прочность.
Производство гипса складывается из дробления, помола и тепловой обработки (дегидратации) гипсового камня. Имеется несколько технологических схем производства гипсового вяжущего: в одних помол предшествует обжигу, в других помол производится после обжига, а в третьих помол и обжиг совмещаются в одном аппарате. Последний способ получил название обжига гипса во взвешенном состоянии. Тепловую обработку гипсового камня производят в варочных котлах, сушильных барабанах, шахтных или других мельницах.
Наиболее распространена схема производства гипсового вяжущего с применением варочных котлов (рис. 5.1). Гипсовый камень, поступающий на завод в крупных кусках, сначала дробят, затем измельчают в мельнице, одновременно подсушивая его. В порошкообразном виде камень направляют в варочный котел периодического или в установку непрерывного действия. Последняя имеет в 2...3 раза выше производительность, но еще находится в стадии практического освоения.
Варочный котел периодического действия (рис. 5.2) представляет собой обмурованный кирпичом стальной котел 4 со сферическим днищем 1, обращенным выпуклой стороной внутрь цилиндра. Для перемешивания гипса в котле имеется мешалка 2, приводимая в движение электродвигателем 3. Раскаленные топочные газы обогревают днище и стенки котла, а также проходят через жаровые трубы 5 внутри котла и в охлажденном состоянии удаляются по дымовой трубе. Продолжительность варки 90... 180 мин. При варке в котле гипс не соприкасается с топочными газами, что позволяет получать чистую продукцию, не загрязненную золой топлива.
Гипсовое вяжущее в сушильных барабанах получают путем обжига гипсового камня в виде щебня размером до 20 мм.
Рис. 5.1. Технологическая схема производства строительного гипса с применением варочных котлов: |
-В |
/ — мостовой грейферный кран; 2 — бункер гипсового камня; 3 — лотковый питатель; 4 — щековая дробилка; 5 — ленточные транспортеры; 6—бункер гипсового щебня; 7 — тарельчатый питатель; 8—шахтная мельница; 9 — сдвоенный циклон; 10 — батарея циклонов; 11 — вентилятор; 12— рукавные фильтры; 13 — пылеосаднтельиая камера; 14 — шнеки; 15 — бункер сырого молотого гипса; 16 — камера томления; 17— гнпсо - вароч'ный котел; 18 — элеватор; 19 — буикер готового гнпса; 20 — скребковый транспортер
Рис. 5.2. Варочный котел для изготовления строительного гипса: /— днище; 2 — смеситель; 3 — электродвигатель; 4 — котел; 5 — жаровые трубы; 6 — выгрузочный желоб |
Обжиговой частью сушильного барабана служит наклонный стальной цилиндр диаметром до 2,5 м и длиной до 20 м, установленный на роликовых опорах и непрерывно вращающийся. Гипсовый щебень подается в барабан с приподнятой стороны и в
результате вращения наклонного барабана перемещается в сторону наклона. Из топки в барабан поступают раскаленные дымовые газы, которые при движении вдоль барабана обжигают гипсовый камень, а с противоположной стороны удаляются вентилятором. Далее гипсовый камень измельчают в мельницах
При обжиге гипса во взвешенном состоянии совмещают две операции: измельчение и обжиг. В мельницу (шахтную, шаровую или роликовую) подают гипсовый щебень и одновременно нагнетают горячие дымовые газы. Образующиеся при размоле мельчайшие зерна гипса товарной фракции увлекаются из мельницы потоком дымовых газов и в процессе транспортирования в раскаленном газовом потоке обжигаются. Пылевоздушная смесь поступает в циклоны и фильтры для осаждения гипса. Наибольшую производительность из рассмотренных схем имеет последняя, затем схема обжига в сушильных барабанах и, наконец, в варочных котлах. Однако первые две схемы существенно уступают по качеству продукции схеме с варкой гипса.
При затворении порошка гипса водой полуводный сернокислый кальций CaS04-О. БНгО, содержащийся в нем, начинает растворяться до образования насыщенного раствора и одновременно гидратироваться, присоединяя 1,5 молекулы воды и переходя в двугидрат Са$04-2Нг0 по уравнению
CaS04 ■ 0,5Н2О -+-1,5Н20 = Са S04, 2Н20
Растворимость двугидрата примерно в 5 раз меньше растворимости исходного порошка — полугидрата CaSO4-0,5H2O. В результате образовавшийся насыщенный раствор полугидрата оказывается пересыщенным по отношению к двугидрату. Пересыщенный раствор в обычных условиях не может существовать — из него выделяются мельчайшие частицы твердого вещества — двуводного сернокислого кальция. По мере накопления этих частиц они склеиваются между собой, вызывая загустева - ние (схватывание) теста. Затем мельчайшие частицы гидрата начинают кристаллизоваться, определяя этим образование прочного гипсового камня. Дальнейшее увеличение прочности гипса происходит вследствие высыхания твердеющей массы и более полной кристаллизации при этом. Твердение гипса можно ускорить сушкой, но при температуре не выше 65°С во избежание обратной дегидратации двуводного гипса.
Быстрое схватывание гипса затрудняет в ряде случаев его использование и вызывает необходимость применения замедлителей схватывания (кератинового, известково-кератинового клея, сульфитно-дрожжевой бражки в количестве 0,1...0,3% от массы гипса). Замедлители схватывания уменьшают скорость растворения полуводного гипса й замедляют диффузионные процессы. При необходимости ускорить схватывание гипса к нему добавляют двуводный гипс, поваренную соль, серную кислоту. Одни из них повышают растворимость полуводного гипса, другие (двуводный гипс) образуют центры кристаллизации, вокруг которых быстро закристаллизовывается вся масса.
Применяется гипсовое вяжущее для производства гипсовых и гипсобетонных строительных изделий для внутренних частей зданий (перегородочных плит, панелей, сухой штукатурки, приготовления гипсовых и смешанных растворов, производства декоративных и отделочных материалов, например искусственного мрамора), а также для производства гипсоцементно-пуццолано - вых вяжущих.
Ф Высокопрочный гипс является разновидностью полуводного гипса. Этот полуводный гипс a-модификации, который имеет более крупные кристаллы, обусловливающие меньшую водопотреб - ность гипса (40...45% воды), позволяет получать гипсовый камень с большей плотностью и прочностью. Получают его путем нагревания природного гипса паром под давлением 0,2...0,3 МПа с последующей сушкой при температуре 160...180°С. Прочность его за 7 сут достигает 15...40 МПа. Высокопрочный гипс выпускают пока в небольшом количестве и применяют в основном в металлургической промышленности для изготовления форм. Однако он успешно может заменить обыкновенное гипсовое вяжущее, обеспечив изделиям высокую прочность.
• Формовочный гипс состоит в основном из кристаллов р-модификации и незначительного количества примесей. Он обладает повышенной водопотребностью, а будучи затвердевшим, имеет высокую пористость. Это свойство формовочного гипса успешно используется в керамической и фарфорофаянсовой промышленности для изготовления форм.