Springer Texts in Business and Economics

TheAR(1) model. From (5.26), by continuous substitution just like (5.29), one could stop at ut_s to get

ut = Psut_s + ps 1£t_s+1 + ps 2©t_s+2 + .. + pet-1 + ©t for t > s.

Note that the power of p and the subscript of e always sum to t. Multiplying both sides by ut-s and taking expected value, one gets

E (utut_s) = psE (uj-s) + ps-1E (©t_s+1ut_s) + .. + pE (et_1ut_s) + E (©tut_s)
using (5.29), ut_s is a function of et_s, past values of et_s and uo. Since uo is independent of the e’s, and the e’s themselves are not serially correlated, then ut_s is independent of et, et_i,..., et_s+i. Hence, all the terms on the right hand side of E(utut_s) except the first are zero. Therefore, cov(ut, ut_s) = E(utut_s) = psau2 for t > s.

5.7 Relative Efficiency of OLS Under the AR(1) Model.

T T T T

a. "ols = J2 xtyt xt2 = " + J2 xtut xt2 with E ("ols) = " since xt

t=i t=i t=i t=i

and ut are independent. Also,

2 / T T 2 T / T 2

var ("ols) = E ("ols _ " = E xtut/£xt2 = E xt2E К xt2

t=i t=i t=i t=i

image206

C E і EE xjxsutu, 3

using the fact that E(utus) = pjt_sj 0,2 as shown in problem 6.

Alternatively, one can use matrix algebra, see Chap. 9. For the AR(1) model, Й = E(uu') is given by Eq. (9.9) of Chap. 9. So

i p p2 ... pT 1

xi

x'^x = (xi, ...,xT)

p i p... pT_2

x2

pT_l pT_2 pT_3 ... i

xT

= (x2 + px1x2 +

.. + pt_1xtx^ + (pxix2 + x2 +

+ pT

+ (p2x1x3 + px2x3 + .. + pT 3xtx^ + ..

+ (pT_3x1xT + pT_2 x2xt + .. + xT)

collecting terms, we get

image207
image208
image209
image210

ЛЛ

X2

 

XT

 

+ (1 + p2)x| - pX4X3 + .. + xT - pXT—1Xt] .

 

image211
image212
image213

b. For Xt following itself an AR(1) process: Xt = Xxt-1 + vt, we know that к is the correlation of Xt and Xt-1, and from problem 5.6, correl(xt, Xt-s) = ks.

T-1 T

As T! 1, к is estimated well by Also, к2 is estimated

t=1 t=1

 

T—2 T

well by xtXt+2 x2, etc. Hence

t=1 t=1

Подпись: 1 - p2Подпись: asy eff(" ois = lim T!1 r( " pw)

var("ols 0 + p2 — 2pk) 0 + 2pk + 2p2X2 + ..)

(1 — p2)(1 — pk)

(1 C p2 — 2pk)(1 C pk)

where the last equality uses the fact that (1 C pk)/(1 — pk) = (1 C 2pk C 2p2k2 C..). For k = 0, or p = k, this asy eff("ols) is equal to (1 — p2)/(1 C p2).

c. The asy eff("ols) derived in part (b) is tabulated below for various values of p and k. A similar table is given in Johnston (1984, p. 312). For p > 0, loss in efficiency is big as p increases. For a fixed k, this asymptotic efficiency drops from the 90 to a 10% range as p increases from 0.2 to 0.9. Variation in k has minor effects when p > 0. For p < 0, the efficiency loss is still big as the absolute value of p increases, for a fixed k. However, now variation in k has a much stronger effect. For a fixed negative p, the loss in efficiency decreases with k. In fact, for k = 0.9, the loss in efficiency drops from 99% to 53 as p goes from —0.2 to —0.9. This is in contrast to say k = 0.2 where the loss in efficiency drops from 93 to 13% as p goes from —0.2 to —0.9.

(Asymptotic Relative Efficiency of pols) x 100

' P '

A

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

10.5

22.0

34.2

47.1

60.0

72.4

83.5

92.3

98.0

100

98.0

92.3

83.5

72.4

60.0

47.1

34.2

22.0

10.5

0.1

11.4

23.5

36.0

48.8

61.4

73.4

84.0

92.5

98.1

100

98.0

92.2

83.2

71.8

59.0

45.8

32.8

20.7

9.7

0.2

12.6

25.4

38.2

50.9

63.2

74.7

84.8

92.9

98.1

100

98.1

92.3

83.2

71.6

58.4

44.9

31.8

19.8

9.1

0.3

14.1

27.7

40.9

53.5

65.5

76.4

85.8

93.3

98.2

100

98.1

92.5

83.5

71.7

58.4

44.5

31.1

19.0

8.6

0.4

16.0

30.7

44.2

56.8

68.2

78.4

87.1

93.9

98.4

100

98.3

92.9

84.1

72.4

58.8

44.6

30.8

18.5

8.2

0.5

18.5

34.4

48.4

60.6

71.4

80.8

88.6

94.6

98.6

100

98.4

93.5

85.1

73.7

60.0

45.3

31.1

18.4

7.9

0.6

22.0

39.4

53.6

65.4

75.3

83.6

90.3

95.5

98.8

100

98.6

94.3

86.6

75.7

62.1

47.1

32.0

18.6

7.8

0.7

27.3

46.2

60.3

71.2

79.9

86.8

92.3

96.4

99.0

100

98.9

95.3

88.7

78.8

65.7

50.3

34.2

19.5

7.8

0.8

35.9

56.2

69.3

78.5

85.4

90.6

94.6

97.5

99.3

100

99.2

96.6

91.4

83.2

71.4

56.2

38.9

22.0

8.4

0.9

52.8

71.8

81.7

87.8

92.0

94.9

97.1

98.7

99.6

100

99.6

98.1

95.1

89.8

81.3

68.3

50.3

29.3

10.5

Asymptotic Relative Efficiency

image216100

80

60

40

20

0

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d. Ignoring autocorrelation, s2 x2 estimates a2 x^, but

t=i t=i

Подпись: = a2 x2 (i - Px)/(i + pX)asy. var (Pols)

image218 image219

so the asy. bias in estimating the var("ols) is

and asy. proportionate bias = —2pX/(i + pX).

Percentage Bias in estimating var((°ols)

P

A

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

0

0.1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.1

19.8

17.4

15.1

12.8

10.5

8.3

6.2

4.1

0

-2.0

-5.8

-7.7

-9.5

-11.3

-13.1

-14.8

-16.5

0.2

43.9

38.1

32.6

27.3

22.2

17.4

12.8

8.3

0

-3.9

-11.3

-14.8

-18.2

-21.4

-24.6

-27.6

-30.5

0.3

74.0

63.2

53.2

43.9

35.3

27.3

19.8

12.8

0

-5.8

-16.5

-21.4

-26.1

-30.5

-34.7

-38.7

-42.5

0.4

112.5

94.1

77.8

63.2

50.0

38.1

27.3

17.4

0

-7.7

-21.4

-27.6

-33.3

-38.7

-43.8

-48.5

-52.9

0.5

163.6

133.3

107.7

85.7

66.7

50.0

35.3

22.2

0

-9.5

-26.1

-33.3

-40.0

-46.2

-51.9

-57.1

-62.1

0.6

234.8

184.6

144.8

112.5

85.7

63.2

43.9

27.3

0

-11.3

-30.5

-38.7

-46.2

-52.9

-59.2

-64.9

-70.1

0.7

340.5

254.5

192.2

144.8

107.7

77.8

53.2

32.6

0

-13.1

-34.7

-43.8

-51.9

-59.2

-65.8

-71.8

-77.3

0.8

514.3

355.6

254.5

184.6

133.3

94.1

63.2

38.1

0

-14.8

-38.7

-48.5

-57.1

-64.9

-71.8

-78.0

-83.7

0.9

852.6

514.3

340.5

234.8

163.6

112.5

74.0

43.9

0

-16.5

-42.5

-52.9

-62.1

-70.1

-77.3

-83.7

-89.5

This is tabulated for various values of p and X. A similar table is given in Johnston (1984, p. 312).

For p and X positive, var ols^ is underestimated by the conventional for­mula. For p = X = 0.9, this underestimation is almost 90%. For p < 0, the var("ols) is overestimated by the conventional formula. For p = —0.9 and X = 0.9, this overestimation is of magnitude 853%. e. et = yt — yt = (" — "ols)xt + ut

Hence, p e2 = "ols — " p x2 + p u2 — 2 "ols — " p xtut and

image220 Подпись: C TOu2

t=i t=i t=i t=i

So that E(s2) = E ^ P e2/(T — 1)

image222
Подпись:
Подпись: /(T -1)
Подпись: T P x2 t= 1

If p = 0, then E(s2) = a2. If xt follows an AR(1) model with parameter X, then for large T, E(s2) = au2 (Т - 1-^ /(T - 1).

For T = 101, E(s2) = ctu2(101 - iC-pX /100.

This can be tabulated for various values of p and X. For example, when p = X = 0.9, E(s2) = 0.915 a2.

Добавить комментарий

Springer Texts in Business and Economics

The General Linear Model: The Basics

7.1 Invariance of the fitted values and residuals to non-singular transformations of the independent variables. The regression model in (7.1) can be written as y = XCC-1" + u where …

Regression Diagnostics and Specification Tests

8.1 Since H = PX is idempotent, it is positive semi-definite with b0H b > 0 for any arbitrary vector b. Specifically, for b0 = (1,0,.., 0/ we get hn …

Generalized Least Squares

9.1 GLS Is More Efficient than OLS. a. Equation (7.5) of Chap. 7 gives "ois = " + (X'X)-1X'u so that E("ois) = " as long as X and u …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.