Springer Texts in Business and Economics
The backup regressions are given below: These are performed using SAS
OLS REGRESSION OF LNC ON CONSTANT, LNP, AND LNY Dependent Variable: LNC
Analysis of Variance
Sum of |
Mean |
||||
Source |
DF |
Squares |
Square |
F Value |
Prob>F |
Model |
2 |
0.50098 |
0.25049 |
9.378 |
0.0004 |
Error |
43 |
1.14854 |
0.02671 |
||
C Total |
45 |
1.64953 |
RootMSE 0.16343 R-square 0.3037
DepMean 4.84784 Adj R-sq 0.2713
C. V. 3.37125
Parameter Estimates
|
RESIDUAL |
PLOT OF RESIDUAL VS. LNY |
LNY |
b. Regression for Glejser Test (1969)
Dependent Variable: ABS_E MODEL: Z1=LNYA(—1/
Analysis of Variance
Sum of |
Mean |
||||
Source |
DF |
Squares |
Square |
F Value |
Prob>F |
Model |
1 |
0.04501 |
0.04501 |
5.300 |
0.0261 |
Error |
44 |
0.37364 |
0.00849 |
||
C Total |
45 |
0.41865 |
|||
Root MSE |
0.09215 |
R-square |
0.1075 |
||
Dep Mean |
0.12597 |
Adj R-sq |
0.0872 |
||
C. V. |
73.15601 |
Parameter Estimates
|
Variable |
DF |
Parameter Estimate |
Standard Error |
T for H0: Parameter=0 |
Prob>|T| |
INTERCEP |
1 |
2.217240 |
0.92729847 |
2.391 |
0.0211 |
Z3 (LNYA 5) |
1 |
-0.957085 |
0.42433823 |
-2.255 |
0.0291 |
MODEL: Z4=LNYA1 Dependent Variable: ABS_E
Analysis of Variance
Sum of |
Mean |
||||
Source |
DF |
Squares |
Square |
F Value |
Prob>F |
Model |
1 |
0.04284 |
0.04284 |
5.016 |
0.0302 |
Error |
44 |
0.37581 |
0.00854 |
||
C Total |
45 |
0.41865 |
|||
Root MSE |
0.09242 |
R-square |
0.1023 |
||
Dep Mean |
0.12597 |
Adj R-sq |
0.0819 |
||
C. V. |
73.36798 |
||||
Parameter Estimates |
|||||
Parameter |
Standard |
T for H0: |
|||
Variable |
DF |
Estimate |
Error |
Parameter=0 |
1— A _Q о CL |
INTERCEP |
1 |
1.161694 |
0.46266689 |
2.511 |
0.0158 |
Z4 (LNYA1) |
1 |
-0.216886 |
0.09684233 |
-2.240 |
0.0302 |
c. Regression for Goldfeld and Quandt Test (1965) with first 17 obervations
Dependent Variable: LNC
Analysis of Variance
|
Parameter Estimates
|
11 |
KY |
5.37906 |
11 |
0.23428 |
40 |
29 |
12 |
SD |
4.81545 |
12 |
0.11470 |
23 |
11 |
13 |
AZ |
4.66312 |
13 |
0.22128 |
39 |
26 |
14 |
ND |
4.58237 |
14 |
0.28253 |
43 |
29 |
15 |
MT |
4.73313 |
15 |
0.17266 |
34 |
19 |
16 |
WY |
5.00087 |
16 |
0.02320 |
5 |
-11 |
17 |
TN |
5.04939 |
17 |
0.14323 |
31 |
14 |
18 |
IN |
5.11129 |
18 |
0.11673 |
25 |
7 |
19 |
GA |
4.97974 |
19 |
0.03583 |
10 |
-9 |
20 |
TX |
4.65398 |
20 |
0.08446 |
18 |
-2 |
21 |
IA |
4.80857 |
21 |
0.01372 |
3 |
-18 |
22 |
ME |
4.98722 |
22 |
0.25740 |
41 |
19 |
23 |
WI |
4.83026 |
23 |
0.01754 |
4 |
-19 |
24 |
OH |
4.97952 |
24 |
0.03201 |
9 |
-15 |
25 |
VT |
5.08799 |
25 |
0.20619 |
36 |
11 |
26 |
MO |
5.06430 |
26 |
0.05716 |
15 |
-11 |
27 |
KS |
4.79263 |
27 |
0.04417 |
12 |
-15 |
28 |
NE |
4.77558 |
28 |
0.09793 |
20 |
-8 |
29 |
MI |
4.94744 |
29 |
0.12797 |
28 |
-1 |
30 |
FL |
4.80081 |
30 |
0.05625 |
14 |
-16 |
31 |
MN |
4.69589 |
31 |
0.02570 |
8 |
-23 |
32 |
PA |
4.80363 |
32 |
0.02462 |
6 |
-26 |
33 |
NV |
4.96642 |
33 |
0.26506 |
42 |
9 |
34 |
RI |
4.84693 |
34 |
0.11760 |
26 |
-8 |
35 |
VA |
4.93065 |
35 |
0.04776 |
13 |
-22 |
36 |
WA |
4.66134 |
36 |
0.00638 |
2 |
-34 |
37 |
DE |
5.04705 |
37 |
0.20120 |
35 |
-2 |
38 |
CA |
4.50449 |
38 |
0.14953 |
32 |
-6 |
39 |
IL |
4.81445 |
39 |
0.00142 |
1 |
-38 |
40 |
MD |
4.77751 |
40 |
0.20664 |
37 |
-3 |
41 |
NY |
4.66496 |
41 |
0.02545 |
7 |
-34 |
42 |
MA |
4.73877 |
42 |
0.12018 |
27 |
-15 |
43 |
NH |
5.10990 |
43 |
0.15991 |
33 |
-10 |
44 |
DC |
4.65637 |
44 |
0.12810 |
29 |
-15 |
45 |
CT |
4.66983 |
45 |
0.07783 |
17 |
-28 |
46 |
NJ |
4.70633 |
46 |
0.05940 |
16 |
-30 |
SPEARMAN RANK CORRELATION TEST
OBS R T
e. Harvey’s Multiplicative Heteroskedasticity Test (1976)
Dependent Variable: LNE_SQ
Analysis of Variance
|
HARVEY’S MULTIPLICATIVE HETEROSKEDASTICITY TEST (1976)
OBS HV. TEST
1 2.90997
f. Regression for Breusch and Pagan Test (1979)
Dependent Variable: X2
Analysis of Variance
Sum of |
Mean |
||||
Source |
DF |
Squares |
Square |
F Value |
Prob>F |
Model |
1 |
10.97070 |
10.97070 |
6.412 |
0.0150 |
Error |
44 |
75.28273 |
1.71097 |
||
C Total |
45 |
86.25344 |
RootMSE 1.30804 R-square 0.1272
DepMean 1.00001 Adj R-sq 0.1074
C. V. 130.80220
Parameter Estimates
|
BREUSCH & PAGAN TEST (1979)
OBS RSSBP
1 5.48535
g. Regression for White Test (1979)
Dependent Variable: E_SQ
Analysis of Variance |
|||||
Sum of |
Mean |
||||
Source |
DF |
Squares |
Square |
F Value |
Prob>F |
Model |
5 |
0.01830 |
0.00366 |
4.128 |
0.0041 |
Error |
40 |
0.03547 |
0.00089 |
||
C Total |
45 |
0.05377 |
|||
Root MSE 0.02978 R-square |
0.3404 |
||||
Dep Mean 0.02497 Adj R-sq |
0.2579 |
||||
C. V. |
119.26315 |
||||
Parameter Estimates |
|||||
Parameter |
Standard |
T for H0: |
|||
Variable |
DF |
Estimate |
Error Parameter=0 |
Prob>|T| |
|
INTERCEP |
1 |
18.221989 |
5.37406002 |
3.391 |
0.0016 |
LNP |
1 |
9.506059 |
3.30257013 |
2.878 |
0.0064 |
LNY |
1 |
-7.893179 |
2.32938645 |
-3.389 |
0.0016 |
LNP. SQ |
1 |
1.281141 |
0.65620773 |
1.952 |
0.0579 |
LNPY |
1 |
-2.078635 |
0.72752332 |
-2.857 |
0.0068 |
LNY. SQ |
1 |
0.855726 |
0.25304827 |
3.382 |
0.0016 |
Normality Test (Jarque-Bera) This chart was done with EViews.
Series:RESID |
|
Sample 1 46 |
|
Observations 4 6 |
|
Mean |
-9.95E-16 |
Median |
0.007568 |
Maximum |
0.328677 |
Minimum |
-0.418675 |
Std. Dev. |
0.159760 |
Skewness |
-0.181935 |
Kurtosis |
2.812520 |
Jarque-Bera |
0.321137 |
Probability |
0.851659 |
SAS PROGRAM Data CIGAR;
Input OBS STATE $ LNC LNP LNY; CARDS;
Proc reg data=CIGAR;
Model LNC=LNP LNY;
Output OUT=OUT 1 R=RESID;
Proc Plot data=OUT1 hpercent=85 vpercent=60;
Plot RESID*LNY=‘*’; run;
***** GLEJSER’S TEST (1969) *****;
*****************************************,
Data GLEJSER; set OUT1;
ABS_E=ABS(RESID);
Z1=LNY**-1;
Z2=LNY**-.5;
Z3=LNY**.5;
Z4=LNY;
Proc reg data=GLEJSER;
Model ABS_E=Z1;
Model ABS_E=Z2;
Model ABS_E=Z3;
Model ABS_E=Z4;
TITLE ‘REGRESSION FOR GLEJSER TEST (1969)’; LABEL Z1=‘LNY“(-1)’
Z2=‘LNY“(-0.5)’
Z3=‘LNY“(0.5)’
Z4=‘LNY“(1)’;
run;
***** GOLDFELD & QUANDT TEST (1965) *****; *******************************************************.
Proc sort data=CIGAR out=GOLDFELD;
By LNY;
Data GQTEST1; set GOLDFELD;
If_N_<18; OBS=_N_;
Data GQTEST2; set GOLDFELD;
If _N_>29; OBS=_N_-29;
Proc reg data=GQTEST1;
Model LNC=LNP LNY;
Output out=GQ_OUT1 R=GQ_RES1;
TITLE ‘REGRESSION FOR GOLDFELD AND QUANDT TEST (1965) w/ first 17 obs’;
Proc reg data=GQTEST2;
Model LNC=LNP LNY;
Output out=GQ_OUT2 R=GQ_RES2;
TITLE ‘REGRESSION FOR GOLDFELD AND QUANDT TEST (1965) w/last 17 obs’;
run;
***** SPEARMAN’S RANK CORRELATION TEST *****; ***************************************************************.
Data SPEARMN1; set GOLDFELD;
RANKY=_N_;
Proc sort data=GLEJSER out=OUT2;
By ABS_E;
DataTEMP1; setOUT2;
RANKE=_N_;
Proc sort data=TEMP1 out=SPEARMN2;
By LNY;
Data SPEARMAN;
Merge SPEARMN1 SPEARMN2;
By LNY;
D=RANKE-RANKY;
* Difference b/w Ranking of —RES— and Ranking of LNY; D_SQ=D**2;
Proc means data=SPEARMAN NOPRINT;
Var D_SQ;
Output out=OUT3 SUM=SUM_DSQ;
Data SPTEST; Set OUT3;
R=1-((6*SUM_DSQ)/(46**3-46));
T=SQRT (R**2*(46-2)/(1-R**2));
Proc print data=SPEARMAN;
Var STATE LNC RANKY ABS_E RANKE D;
TITLE ‘DATA FOR SPEARMAN RANK CORRELATION TEST’;
Proc print data=SPTEST;
Var R T;
TITLE ‘SPEARMAN RANK CORRELATION TEST’; run;
‘HARVEY’S MULTIPLICATIVE HETEROSKEDASTICITY TEST (1976) **;
A**********************************************************************************.
Data HARVEY; setOUTI;
E_SQ=RESID‘‘2;
LNE_SQ=LOG(E_SQ);
LLNY=LOG(LNY);
Proc reg data=HARVEY;
Model LNE_SQ=LLNY;
Output out=OUT4 R=RLNESQ;
TITLE ‘HARVEY’ ‘S MULTIPLICATIVE HETEROSKEDASTICITY TEST (1976)’;
Data HARVEY1; set OUT4;
HV_TEMP=LNE_SQ‘‘2-RLNESQ‘‘2;
Proc means data=HARVEY1;
Var HV_TEMP LNE. SQ;
Output out=HARVEY2 SUM=SUMTMP SUMLNESQ;
Data HARVEY3; set HARVEY2;
HV_TEST=(SUMTMP-46* (SUMLNESQ/46)‘‘2)/4.9348;
Proc print data=HARVEY3;
Var HV_TEST;
TITLE ‘HARVEY’ ‘S MULTIPLICATIVE HETEROSKEDASTICITY TEST (1976)’;
***** BREUSCH & PAGAN TEST (1979) *****; ***************************************************,
Proc means data=HARVEY;
Var E_SQ;
Output out=OUT5 MEAN=S2HAT;
TITLE ‘BREUSCH & PAGAN TEST (1979)’;
Proc print data=OUT5;
Var S2HAT;
Data BPTEST; set HARVEY;
X2=E_SQ/0.024968;
Proc reg data=BPTEST;
Model X2=LNY;
Output out=OUT6 R=BP_RES;
TITLE ‘REGRESSION FOR BREUSCH & PAGAN TEST (1979)’;
Data BPTEST1; set OUT6;
BP_TMP=X2**2-BP_RES**2;
Proc means data=BPTEST1;
Var BP_TMP X2;
Output out=OUT7 SUM=SUMBPTMP SUMX2;
Data BPTEST2; set OUT7;
RSSBP=(SUMBPTMP-SUMX2**2/46)/2;
Proc print data=BPTEST2;
Var RSSBP;
***** WHITE’S TEST (1980) *****;
*************************************.
Data WHITE; set HARVEY;
LNP_SQ=LNP**2;
LNY_SQ=LNY**2;
LNPY=LNP*LNY;
Proc reg data=WHITE;
Model E_SQ=LNP LNY LNP. SQ LNPY LNY_SQ; TITLE ‘REGRESSION FOR WHITE TEST (1979)’; run;