Springer Texts in Business and Economics

The backup regressions are given below

a. OLS regression of consumption on a constant and Income using EViews Dependent Variable: Consumption Method: Least Squares

Sample: 1959 2007 Included observations: 49

b. The Breusch-Godfrey Serial Correlation LM Test for serial correlation of the first order is obtained below using EViews. An F-statistic as well as the LM statistic which is computed as T* R-squared are reported, both of which are significant. The back up regression is also shown below these statistics. This regression runs the OLS residuals on their lagged values and the regressors in the original model. We cannot reject first order serial correlation.

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 168.9023 Prob. F(1,46) 0.0000

Obs*R-squared 38.51151 Prob. Chi-Square(1) 0.0000

Test Equation:

Dependent Variable: RESID Method: Least Squares

Sample: 1959 2007 Included observations: 49

Presample missing value lagged residuals set to zero.

Coefficient

Std. Error

t-Statistic

Prob.

C

-54.41017

102.7650

-0.529462

0.5990

Y

0.003590

0.005335

0.673044

0.5043

RESID(-1)

0.909272

0.069964

12.99624

0.0000

R-squared

0.785949

Mean dependent var

-5.34E-13

Adjusted R-squared

0.776643

S. D. dependent var

433.0451

S. E. of regression

204.6601

Akaike info criterion

13.53985

Sum squared resid

1926746.

Schwarz criterion

13.65567

Log likelihood

-328.7263

Hannan-Quinn criter.

13.58379

F-statistic

84.45113

Durbin-Watson stat

2.116362

Prob(F-statistic)

0.000000

c. Cochrane-Orcutt AR(1) regression—twostep estimates using Stata

. prais c y, corc two

Iteration 0: rho = 0.0000 Iteration 1: rho = 0.9059

Cochrane-Orcutt AR(1) regression - twostep estimates

48

519.58

0.0000

0.9187

0.9169

183.38

c

Coef.

Std. Err.

t

P>|t|

[95% Conf. Interval]

y

_cons

.9892295

-1579.722

.0433981

1014.436

22.79

-1.56

0.000

0.126

.9018738 1.076585 -3621.676 462.2328

rho

.9059431

Durbin-Watson statistic (original) 0.180503 Durbin-Watson statistic (transformed) 2.457550

Cochrane-Orcutt AR(1) regression - iterated estimates using Stata 11

. prais c y,

corc

Iteration 0

: rho = 0.0000

Iteration 1

: rho = 0.9059

Iteration 2

: rho = 0.8939

Iteration 3

: rho = 0.8893

Iteration 4

: rho = 0.8882

Iteration 5

: rho = 0.8880

Iteration 6

: rho = 0.8879

Iteration 7

: rho = 0.8879

Iteration 8

: rho = 0.8879

Iteration 9

: rho = 0.8879

48

689.89

0.0000

0.9375

0.9361

183.26

c

Coef.

Std. Err.

t

P>|t|

[95% Conf. Interval]

y

.cons

rho

.996136

-1723.689

.8879325

.0379253

859.2143

26.27

-2.01

0.000

0.051

.9197964 1.072476 -3453.198 5.819176

Durbin-Watson statistic (original) 0.180503 Durbin-Watson statistic (transformed) 2.447750

d. Prais-Winsten AR(1) regression—iterated estimates using Stata 11 . prais c y

Iteration 0: rho = 0.0000 Iteration 1: rho = 0.9059

Iteration 2: rho = 0.9462 Iteration 3: rho = 0.9660 Iteration 4: rho = 0.9757 Iteration 5: rho = 0.9794 Iteration 6: rho = 0.9805 Iteration 7: rho = 0.9808 Iteration 8: rho = 0.9808 Iteration 9: rho = 0.9808 Iteration 10: rho = 0.9809 Iteration 11: rho = 0.9809 Iteration 12: rho = 0.9809

49

119.89

0.0000

0.7184

0.7124

180.74

c

Coef.

Std. Err.

t

P>|t|

[95% Conf. Interval]

y

.912147

.047007

19.40

0.000

.8175811

1.006713

_cons

rho

358.9638

.9808528

1174.865

0.31

0.761

-2004.56

2722.488

Durbin-Watson statistic (original) 0.180503 Durbin-Watson statistic (transformed) 2.314703

e. The Newey-West HAC Standard Errors using EViews are shown below: Dependent Variable: Consum Method: Least Squares

Sample: 1959 2007 Included observations: 49

Newey-West HAC Standard Errors & Covariance (lag truncation = 3)

Coefficient

Std. Error

t-Statistic

Prob.

C

-1343.314

422.2947

-3.180987

0.0026

Y

0.979228

0.022434

43.64969

0.0000

R-squared

0.993680

Mean dependent var

16749.10

Adjusted R-squared

0.993545

S. D. dependent var

5447.060

S. E. of regression

437.6277

Akaike info criterion

15.04057

Sum squared resid

9001348.

Schwarz criterion

15.11779

Log likelihood

-366.4941

Hannan-Quinn criter.

15.06987

F-statistic

7389.281

Durbin-Watson stat

0.180503

Prob(F-statistic)

0.000000

Добавить комментарий

Springer Texts in Business and Economics

The General Linear Model: The Basics

7.1 Invariance of the fitted values and residuals to non-singular transformations of the independent variables. The regression model in (7.1) can be written as y = XCC-1" + u where …

Regression Diagnostics and Specification Tests

8.1 Since H = PX is idempotent, it is positive semi-definite with b0H b > 0 for any arbitrary vector b. Specifically, for b0 = (1,0,.., 0/ we get hn …

Generalized Least Squares

9.1 GLS Is More Efficient than OLS. a. Equation (7.5) of Chap. 7 gives "ois = " + (X'X)-1X'u so that E("ois) = " as long as X and u …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.