Springer Texts in Business and Economics

The back up regressions are given below. These are performed using SAS

a. Dependent Variable: EMP

Analysis of Variance

Sum of

Mean

Source

DF

Squares

Square

F Value

Prob>F

Model

1

2770902.9483

2770902.9483

4686.549

0.0001

Error

73

43160.95304

591.24593

C Total

74

2814063.9013

RootMSE 24.31555 R-square 0.9847

DepMean 587.94141 Adj R-sq 0.9845

C. V. 4.13571

Parameter Estimates

Variable

DF

Parameter

Estimate

Standard

Error

T for H0: Parameter=0

Prob> |T|

INTERCEP

1

-670.591096

18.59708022

-36.059

0.0001

RGNP.1

1

1.008467

0.01473110

68.458

0.0001

Durbin-Watson D 0.349

(For Number of Obs.) 75

1st Order Autocorrelation 0.788

c. Dependent Variable: RESID

Analysis of Variance

Sum of

Mean

Source

DF

Squares

Square

F Value

Prob>F

Model

1

26929.25956

26929.25956

148.930

0.0001

Error

73

13199.74001

180.81836

U Total

74

40128.99957

Root MSE 13.44687 R-square 0.6711

DepMean -0.74410 Adj R-sq 0.6666

C. V. -1807.13964

Parameter Estimates

Variable

DF

Parameter

Estimate

Standard

Error

T for H0: Parameter=0

Prob>|T|

RESID_

1

0.791403

0.06484952

12.204

0.0001

COCHRANE-ORCUTT(1949) METHOD

Dependent Variable: EMP. STAR

Analysis of Variance

Source DF

Sum of Squares

Mean

Square

F Value

Prob>F

Model 2 Error 72 U Total 74

1358958.4052

12984.21373

1371942.619

679479.20261

180.33630

3767.845

0.0001

Root MSE Dep Mean C. V.

13.42894

129.70776

10.35322

R-square Adj R-sq

0.9905

0.9903

Parameter Estimates

Variable DF

Parameter

Estimate

Standard

Error

T for H0: Parameter=0

Prob>|T|

C. STAR 1 RGNPSTAR 1

-628.267447

0.972263

50.28495095

0.03867418

-12.494

25.140

0.0001

0.0001

d. Prais-Winsten(1954, Yule-Walker) 2-Step Method

Autoreg Procedure Dependent Variable = EMP

Ordinary Least Squares Estimates

SSE

53280.82

DFE

74

MSE

720.0111

Root MSE

26.83302

SBC

722.3376

AIC

717.6761

Reg Rsq

0.9816

Total Rsq

0.9816

Durbin's t

13.43293

PROB>t

0.0001

Durbin-Watson

0.3023

Variable

DF

B Value

Std Error

t Ratio

Approx Prob

Intercept

1

-672.969905

20.216

-33.289

0.0001

RGNP

1

1.003782

0.016

62.910

0.0001

Estimates of Autocorrelations

Lag

Covariance

Correlation

-1 98765432 1 0 1 23456789 1

0

701.0635

1.000000 |

|****************|

1

574.9163

0.820063 |

Preliminary MSE = 229.5957
Estimates of the Autoregressive Parameters

Lag Coefficient Std Error t Ratio

1 -0.82006318 0.06697949 -12.243497

Yule-Walker Estimates

SSE

14259.84

DFE

73

MSE

195.3403

Root

MSE

13.97642

SBC

627.6068

AIC

620.6146

Reg Rsq Durbin-Watson

0.8919

2.2216

Total

Rsq

0.9951

Variable DF

B Value

Std Error

t Ratio

Approx Prob

Intercept 1 -559.809933

47.373

-11.817

0.0001

RGNP 1

0.914564

0.037

24.539

0.0001

e. Breusch and Godfrey (1978) LM Test

Dependent Variable: RESID Residual

Analysis of Variance

Sum of

Mean

Source

DF

Squares

Square

F Value

Prob>F

Model

2

27011.59888

13505.79944

73.331

0.0001

Error

71

13076.42834

184.17505

C Total

73

40088.02723

Root MSE

13.57111 R-square

0.6738

Dep Mean

-0.74410 AdjR-sq

0.6646

C. V.

-1823.83627

Parameter Estimates

Parameter

Standard T for H0:

Variable

DF

Estimate

Error Parameter=0

Prob>|T|

INTERCEP

1

-7.177291

10.64909636

-0.674

0.5025

RESID_1

1

0.790787

0.06546691

12.079

0.0001

RGNPJ

1

0.005026

0.00840813

0.598

0.5519

SAS PROGRAM

Data ORANGE;

Input DATE EMP RGNP;

Cards;

Data ORANGE1; set ORANGE; RGNP_1=LAG(RGNP);

RGNP_2=LAG2(RGNP);

EMP_1=LAG(EMP);

Proc reg data=ORANGE1;

Model EMP=RGNP_1/DW; Output out=OUT1 R=RESID;

Data TEMP; setOUT1; RESID_1=LAG(RESID);

Proc reg data=TEMP;

Model RESID=RESID_1/noint; run;

***** COCHRANE-ORCUTT(1949) METHOD *****;

Data CODATA; set ORANGE1;

EMP_STAR=EMP-0.791403‘'*EMP_1; *** RHO=0.791403 ***;

RGNPSTAR=RGNP_1-0.791403‘'*RGNP_2;

C_STAR=1-0.791403;

Proc reg data=CO_DATA;

Model EMP_STAR=C_STAR RGNPSTAR/noint;

TITLE ‘COCHRANE-ORCUTT(1949) METHOD’;

***** PRAIS-WINSTEN (1954, YULE-WALKER) METHOD *****;

Proc autoreg data=ORANGE1;

Model EMP=RGNP/DW=1 DWPROB LAGDEP NLAG=1 METHOD=YW; TITLE ‘PRAIS-WINSTEN(1954, YULE-WALKER) 2-STEP METHOD’;

****BREUSCH & GODFREY (1978) LM TEST FOR AUTOCORRELATION***;

A**************************************************************************************.

Proc reg data=TEMP;

Model RESID=RESID_1 RGNP_1;

Title ‘BREUSCH AND GODFREY (1978) LM TEST’; run;

5.21 a. Replication of TABLE VIII, Wheeler(2003, p. 90) entitled: County popu­lation Growth Robustness Check. We will only replicate the first and last columns of that table for p = 1 and p = 5.

Forp = 1:

. reg dpopgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logpop, vce(r);

Linear regression Number of obs = 3102

F(9,3092) = 39.69

Prob > F = 0.0000

R-squared = 0.1275

RootMSE = .11041

dpopgr

Coef.

Robust Std. Err.

t

P>|t|

[95% Conf. Interval]

collrate

.532155

.0658555

8.08

0.000

.40303

.66128

mfgrate

.0529082

.0202971

2.61

0.009

.0131111

.0927054

ur

-.0242001

.0790394

-0.31

0.759

-.1791751

.1307749

pcinc

1.17e-06

3.59e-06

0.33

0.743

-5.86e-06

8.21e-06

educsh

.1104783

.0197946

5.58

0.000

.0716664

.1492901

hwsh

-.0928439

.0420438

-2.21

0.027

-.1752805

-.0104073

polsh

.1669871

.1764535

0.95

0.344

-.1789909

.512965

nwrate

-.1077442

.0161301

-6.68

0.000

-.139371

-.0761173

logpop

.011208

.0026897

4.17

0.000

.0059341

.0164818

_cons

-.2330741

.027877

-8.36

0.000

-.2877334

-.1784147

The higher the proportion of the adult resident population (i. e. of age 25 or older) with a bachelor’s degree or more (collrate); and the higher the proportion of total employment in manufacturing (mfgrate) the higher the County population growth rate (over the period 1980-1990). The unem­ployment rate (ur) and Per capita income (pcinc) have the right sign but are not significant. The higher the share of local government expenditures going to education (educsh) and police protection (polsh), the higher the County population growth rate, whereas the higher the share of local gov­ernment expenditures going to roads and highways (hwsh), the lower is the County population growth rate. Except for (polsh), these local government expenditures shares are significant. The higher the proportion of the resident population that are non-white (nwrate), the lower is the County population growth rate. The larger the size of the county as measured by the log of total resident population (logpop), the higher is the County population growth rate. This is significant.

. test logpop=0;

(1) logpop = 0

F(1,3092) = 17.36 Prob > F = 0.0000

Adding a polynomial of degree 5 in size as measured by logpop, we get for p = 5:

. reg dpopgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logpop logpop2 logpop3 logpop4 logpop5, vce(r);

Linear regression

Number of obs

= 3102

F(9, 3092)

= .

Prob > F

=.

R-squared

= 0.1584

Root MSE

= .1085

dpopgr

Coef.

Robust Std. Err.

t

P>|t|

[95% Conf. Interval]

collrate

.5625516

.0654039

8.60

0.000

.4343121

.6907911

mfgrate

.0134073

.0207008

0.65

0.517

-.0271813

.053996

ur

-.0814677

.0801316

-1.02

0.309

-.2385844

.0756489

pcinc

2.12e-06

3.25e-06

0.65

0.514

-4.26e-06

8.50e-06

educsh

.1078933

.0193862

5.57

0.000

.0698822

.1459044

hwsh

-.0492989

.0415435

-1.19

0.235

-.1307546

.0321568

polsh

.2709651

.1762385

1.54

0.124

-.0745914

.6165217

nwrate

-.0963006

.0156924

-6.14

0.000

-.1270692

-.0655321

logpop

-1.570676

1.056792

-1.49

0.137

-3.642762

.5014103

logpop2

.2330949

.2197

1.06

0.289

-.197678

.6638678

logpop3

-.014022

.0222803

-0.63

0.529

-.0577077

.0296637

logpop4

.0002559

.0011035

0.23

0.817

-.0019078

.0024196

logpop5

2.34e-06

.0000214

0.11

0.913

-.0000396

.0000443

_cons

3.515146

1.989501

1.77

0.077

-.3857338

7.416025

The results are similar to the p = 1 regression, but we lost the significance of mfgrate and hwsh. The joint test for the fifth degree polynomial in log - pop is significant, but the last term is not, suggesting that the fourth degree polynomial is a good place to stop.

. test (logpop = 0) (logpop2 = 0) (logpop3 = 0) (logpop4 = 0) (logpop5 = 0);

(1) logpop = 0

(2) logpop2 = 0

(3) logpop3 = 0

(4) logpop4 = 0

(5) 7 logpop5 = 0

F(5, 3088) = 25.88 Prob > F = 0.0000

. test logpop5 = 0;

(1) logpop5 = 0 F(1,3088) = 0.01

Prob > F = 0.9127

Replication of TABLE IX, Wheeler(2003, p. 91) entitled: County employ­ment Growth Robustness Check. We will only replicate the first and last columns of that table for p = 1 and p = 5.

For p=1:

. reg dempgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logemp, vce(r);

Linear regression Number of obs = 3102

F(9,3092) = 36.11

Prob > F = 0.0000

R-squared = 0.1108

Root MSE = .13223

Robust

dpopgr

Coef.

Std. Err.

t

P>|t|

[95% Conf. Interval]

collrate

.6710405

.0836559

8.02

0.000

.5070137

.8350673

mfgrate

.0500175

.0248382

2.01

0.044

.0013163

.0987186

ur

.1106634

.0858513

1.29

0.197

-.057668

.2789947

pcinc

-3.31e-06

5.00e-06

-0.66

0.508

-.0000131

6.49e-06

educsh

.1659616

.0234637

7.07

0.000

.1199556

.2119675

hwsh

-.0704289

.0500245

-1.41

0.159

-.1685135

.0276557

polsh

.1989802

.1944894

1.02

0.306

-.1823613

.5803217

nwrate

-.1593102

.019703

-8.09

0.000

-.1979426

-.1206779

logemp

.0088257

.0033238

2.66

0.008

.0023087

.0153427

_cons

-.2242782

.0310394

-7.23

0.000

-.2851382

-.1634183

The higher the proportion of the adult resident population (i. e. of age 25 or older) with a bachelor’s degree or more (collrate); and the higher the propor­tion of total employment in manufacturing (mfgrate) the higher the County employment growth rate (over the period 1980-1990). The unemployment rate (ur) and Per capita income (pcinc) are not significant. The higher the share of local government expenditures going to education (educsh) and police protection (polsh), the higher the County employment growth rate, whereas the higher the share of local government expenditures going to roads and highways (hwsh), the lower is the County employment growth rate. Except for (educsh), these local government expenditures shares are not significant. The higher the proportion of the resident population that are non-white (nwrate), the lower is the County educsh growth rate. The larger the size of the county as measured by the log of total resident educsh (logemp), the higher is the County employment growth rate. This is significant.

. test logemp = 0;

(1) logemp = 0 F(1,3092) = 7.05

Prob > F = 0.0080

Adding a polynomial of degree 5 in size as measured by logemp, we get for p = 5:

. reg dempgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logemp logemp2 logemp3 logemp4 logemp5, vce(r);

Linear regression

Number of obs

= 3102

F(13, 3088)

= 33.47

Prob > F

= 0.0000

R-squared

= 0.1295

Root MSE

= .13091

dempgr

Coef.

Robust Std. Err.

t

P>|t|

[95% Conf. Interval]

collrate

.7127472

.0798073

8.93

0.000

.5562665

.8692279

mfgrate

.0162264

.0256496

0.63

0.527

-.0340656

.0665184

ur

.0654624

.0829589

0.79

0.430

-.0971977

.2281226

pcinc

-5.60e-06

3.67e-06

-1.52

0.128

-.0000128

1.60e-06

educsh

.1677939

.0231205

7.26

0.000

.1224607

.2131271

hwsh

-.034885

.049391

-0.71

0.480

-.1317276

.0619577

polsh

.2933336

.1922457

1.53

0.127

-.0836087

.6702759

nwrate

-.1540241

.0175901

-8.76

0.000

-.1885135

-.1195347

logemp

-2.760358

.8853777

-3.12

0.002

-4.496347

-1.024369

logemp2

.5122333

.1992707

2.57

0.010

.1215167

.9029498

logemp3

-.044739

.0218277

-2.05

0.040

-.0875373

-.0019406

logemp4

.0018485

.0011644

1.59

0.113

-.0004346

.0041316

logemp5

-.000029

.0000242

-1.20

0.231

-.0000765

.0000185

_cons

5.430814

1.540746

3.52

0.000

2.409824

8.451804

The results are similar to the p = 1 regression, but we lost the significance of mfgrate. The joint test for the fifth degree polynomial in logpop is signif­icant, but the last term is not, suggesting that the fourth degree polynomial is a good place to stop.

. test (logemp = 0) (logemp2 = 0) (logemp3 = 0) (logemp4 = 0) (logemp5 = 0);

(1) logemp = 0

(2) logemp2 = 0

(3) logemp3 = 0

(4) logemp4 = 0

(5) logemp5 = 0

F(5, 3088) = 18.27 Prob > F = 0.0000 . test logemp5 = 0;

(1) logemp5 = 0 F(1,3088) = 1.44

Prob > F = 0.2307

b. Breusch-Pagan test for heteroskedasticity for the specification with a fourth degree polynomial in log(size) in TABLE VIII, Wheeler(2003, p. 90).

. reg dpopgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logpop logpop2 logpop3 logpop4;

Source I SS df MS Number of obs = 3102

................................................................................ F(12,3089) = 48.43

Model 6.84020955 12 .570017462 Prob > F = 0.0000

Residual 36.3559406 3089 .011769485 R-squared = 0.1584

................................................................................ Adj R-squared = 0.1551

Total I 43.1961502 3101 .013929749 Root MSE = .10849

. estat hettest logpop logpop2 logpop3 logpop4, rhs normal;

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance

Variables: logpop logpop2 logpop3 logpop4 collrate mfgrate ur pcinc educsh hwsh polsh nwrate chi2(12) = 589.14 Prob > chi2 = 0.0000

Breusch-Pagan test for heteroskedasticity for the specification with a 4th degree polynomial in log(size) in TABLE IX, Wheeler(2003, p. 91).

. reg dempgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logemp logemp2 logemp3 logemp4 ;

3102

38.23

0.0000

0.1293

0.1259

.1309

dempgr

Coef.

Std. Err.

t

P>|t|

[95% Conf. Interval]

collrate

.7040415

.0626979

11.23

0.000

.5811078

.8269753

mfgrate

.0156912

.0242125

0.65

0.517

-.0317831

.0631654

ur

.0691242

.0802564

0.86

0.389

-.0882371

.2264855

pcinc

-4.95e-06

3.06e-06

-1.61

0.106

-.000011

1.06e-06

educsh

.1674244

.0216266

7.74

0.000

.1250204

.2098283

hwsh

-.034799

.0507792

-0.69

0.493

-.1343634

.0647654

polsh

.2889395

.1573668

1.84

0.066

-.0196147

.5974937

nwrate

-.1516358

.0182735

-8.30

0.000

-.1874653

-.1158063

logemp

-1.730393

.3710692

-4.66

0.000

-2.45796

-1.002826

logemp2

.2785811

.0599367

4.65

0.000

.1610613

.3961009

logemp3

-.0189696

.0042326

-4.48

0.000

-.0272686

-.0106706

logemp4

.000464

.0001103

4.21

0.000

.0002478

.0006802

_cons

3.666787

.8526094

4.30

0.000

1.995049

5.338526

. estat hettest logemp logemp2 logemp3 logemp4, rhs normal;

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance

Variables: logemp logemp2 logemp3 logemp4 collrate mfgrate ur pcinc educsh hwsh polsh nwrate chi2(12) = 425.82 Prob > chi2 = 0.0000

References

Baltagi, B. and Q. Li (1995), “ML Estimation of Linear Regression Model with AR(1) Errors and Two Observations,” Econometric Theory, Solution 93.3.2, 11: 641-642.

Johnston, J. (1984), Econometric Methods, 3rd. Ed., (McGraw-Hill: New York).

Kim, J. H. (1991), “The Heteroscedastic Consequences of an Arbitrary Variance for the Initial Disturbance of an AR(1) Model,” Econometric Theory, Solution 90.3.1, 7: 544-545.

Kmenta, J. (1986), Elements of Econometrics (Macmillan: New York).

Koning, R. H. (1992), “The Bias of the Standard Errors of OLS for an AR(1) Pro­cess with an Arbitrary Variance on the Initial Observations,” Econometric Theory, Solution 92.1.4, 9: 149-150.

CHAPTER 6

Добавить комментарий

Springer Texts in Business and Economics

The General Linear Model: The Basics

7.1 Invariance of the fitted values and residuals to non-singular transformations of the independent variables. The regression model in (7.1) can be written as y = XCC-1" + u where …

Regression Diagnostics and Specification Tests

8.1 Since H = PX is idempotent, it is positive semi-definite with b0H b > 0 for any arbitrary vector b. Specifically, for b0 = (1,0,.., 0/ we get hn …

Generalized Least Squares

9.1 GLS Is More Efficient than OLS. a. Equation (7.5) of Chap. 7 gives "ois = " + (X'X)-1X'u so that E("ois) = " as long as X and u …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.