Springer Texts in Business and Economics
The back up regressions are given below. These are performed using SAS
a. Dependent Variable: EMP
Analysis of Variance
|
RootMSE 24.31555 R-square 0.9847
DepMean 587.94141 Adj R-sq 0.9845
C. V. 4.13571
Parameter Estimates
|
Durbin-Watson D 0.349
(For Number of Obs.) 75
1st Order Autocorrelation 0.788
c. Dependent Variable: RESID
Analysis of Variance
Sum of |
Mean |
||||
Source |
DF |
Squares |
Square |
F Value |
Prob>F |
Model |
1 |
26929.25956 |
26929.25956 |
148.930 |
0.0001 |
Error |
73 |
13199.74001 |
180.81836 |
||
U Total |
74 |
40128.99957 |
Root MSE 13.44687 R-square 0.6711
DepMean -0.74410 Adj R-sq 0.6666
C. V. -1807.13964
Parameter Estimates
|
COCHRANE-ORCUTT(1949) METHOD
Dependent Variable: EMP. STAR
Analysis of Variance
Source DF |
Sum of Squares |
Mean Square |
F Value |
Prob>F |
Model 2 Error 72 U Total 74 |
1358958.4052 12984.21373 1371942.619 |
679479.20261 180.33630 |
3767.845 |
0.0001 |
Root MSE Dep Mean C. V. |
13.42894 129.70776 10.35322 |
R-square Adj R-sq |
0.9905 0.9903 |
|
Parameter Estimates |
||||
Variable DF |
Parameter Estimate |
Standard Error |
T for H0: Parameter=0 |
Prob>|T| |
C. STAR 1 RGNPSTAR 1 |
-628.267447 0.972263 |
50.28495095 0.03867418 |
-12.494 25.140 |
0.0001 0.0001 |
d. Prais-Winsten(1954, Yule-Walker) 2-Step Method
Autoreg Procedure Dependent Variable = EMP
Ordinary Least Squares Estimates
|
Variable |
DF |
B Value |
Std Error |
t Ratio |
Approx Prob |
Intercept |
1 |
-672.969905 |
20.216 |
-33.289 |
0.0001 |
RGNP |
1 |
1.003782 |
0.016 |
62.910 |
0.0001 |
Estimates of Autocorrelations
|
Preliminary MSE = 229.5957
Estimates of the Autoregressive Parameters
Lag Coefficient Std Error t Ratio
1 -0.82006318 0.06697949 -12.243497
Yule-Walker Estimates
|
e. Breusch and Godfrey (1978) LM Test
Dependent Variable: RESID Residual
Analysis of Variance
Sum of |
Mean |
||||
Source |
DF |
Squares |
Square |
F Value |
Prob>F |
Model |
2 |
27011.59888 |
13505.79944 |
73.331 |
0.0001 |
Error |
71 |
13076.42834 |
184.17505 |
||
C Total |
73 |
40088.02723 |
|||
Root MSE |
13.57111 R-square |
0.6738 |
|||
Dep Mean |
-0.74410 AdjR-sq |
0.6646 |
|||
C. V. |
-1823.83627 |
||||
Parameter Estimates |
|||||
Parameter |
Standard T for H0: |
||||
Variable |
DF |
Estimate |
Error Parameter=0 |
Prob>|T| |
|
INTERCEP |
1 |
-7.177291 |
10.64909636 |
-0.674 |
0.5025 |
RESID_1 |
1 |
0.790787 |
0.06546691 |
12.079 |
0.0001 |
RGNPJ |
1 |
0.005026 |
0.00840813 |
0.598 |
0.5519 |
SAS PROGRAM
Data ORANGE;
Input DATE EMP RGNP;
Cards;
Data ORANGE1; set ORANGE; RGNP_1=LAG(RGNP);
RGNP_2=LAG2(RGNP);
EMP_1=LAG(EMP);
Proc reg data=ORANGE1;
Model EMP=RGNP_1/DW; Output out=OUT1 R=RESID;
Data TEMP; setOUT1; RESID_1=LAG(RESID);
Proc reg data=TEMP;
Model RESID=RESID_1/noint; run;
***** COCHRANE-ORCUTT(1949) METHOD *****;
Data CODATA; set ORANGE1;
EMP_STAR=EMP-0.791403‘'*EMP_1; *** RHO=0.791403 ***;
RGNPSTAR=RGNP_1-0.791403‘'*RGNP_2;
C_STAR=1-0.791403;
Proc reg data=CO_DATA;
Model EMP_STAR=C_STAR RGNPSTAR/noint;
TITLE ‘COCHRANE-ORCUTT(1949) METHOD’;
***** PRAIS-WINSTEN (1954, YULE-WALKER) METHOD *****;
Proc autoreg data=ORANGE1;
Model EMP=RGNP/DW=1 DWPROB LAGDEP NLAG=1 METHOD=YW; TITLE ‘PRAIS-WINSTEN(1954, YULE-WALKER) 2-STEP METHOD’;
****BREUSCH & GODFREY (1978) LM TEST FOR AUTOCORRELATION***;
A**************************************************************************************.
Proc reg data=TEMP;
Model RESID=RESID_1 RGNP_1;
Title ‘BREUSCH AND GODFREY (1978) LM TEST’; run;
5.21 a. Replication of TABLE VIII, Wheeler(2003, p. 90) entitled: County population Growth Robustness Check. We will only replicate the first and last columns of that table for p = 1 and p = 5.
Forp = 1:
. reg dpopgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logpop, vce(r);
Linear regression Number of obs = 3102
F(9,3092) = 39.69
Prob > F = 0.0000
R-squared = 0.1275
RootMSE = .11041
dpopgr |
Coef. |
Robust Std. Err. |
t |
P>|t| |
[95% Conf. Interval] |
|
collrate |
.532155 |
.0658555 |
8.08 |
0.000 |
.40303 |
.66128 |
mfgrate |
.0529082 |
.0202971 |
2.61 |
0.009 |
.0131111 |
.0927054 |
ur |
-.0242001 |
.0790394 |
-0.31 |
0.759 |
-.1791751 |
.1307749 |
pcinc |
1.17e-06 |
3.59e-06 |
0.33 |
0.743 |
-5.86e-06 |
8.21e-06 |
educsh |
.1104783 |
.0197946 |
5.58 |
0.000 |
.0716664 |
.1492901 |
hwsh |
-.0928439 |
.0420438 |
-2.21 |
0.027 |
-.1752805 |
-.0104073 |
polsh |
.1669871 |
.1764535 |
0.95 |
0.344 |
-.1789909 |
.512965 |
nwrate |
-.1077442 |
.0161301 |
-6.68 |
0.000 |
-.139371 |
-.0761173 |
logpop |
.011208 |
.0026897 |
4.17 |
0.000 |
.0059341 |
.0164818 |
_cons |
-.2330741 |
.027877 |
-8.36 |
0.000 |
-.2877334 |
-.1784147 |
The higher the proportion of the adult resident population (i. e. of age 25 or older) with a bachelor’s degree or more (collrate); and the higher the proportion of total employment in manufacturing (mfgrate) the higher the County population growth rate (over the period 1980-1990). The unemployment rate (ur) and Per capita income (pcinc) have the right sign but are not significant. The higher the share of local government expenditures going to education (educsh) and police protection (polsh), the higher the County population growth rate, whereas the higher the share of local government expenditures going to roads and highways (hwsh), the lower is the County population growth rate. Except for (polsh), these local government expenditures shares are significant. The higher the proportion of the resident population that are non-white (nwrate), the lower is the County population growth rate. The larger the size of the county as measured by the log of total resident population (logpop), the higher is the County population growth rate. This is significant.
. test logpop=0;
(1) logpop = 0
F(1,3092) = 17.36 Prob > F = 0.0000
Adding a polynomial of degree 5 in size as measured by logpop, we get for p = 5:
. reg dpopgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logpop logpop2 logpop3 logpop4 logpop5, vce(r);
Linear regression |
Number of obs |
= 3102 |
F(9, 3092) |
= . |
|
Prob > F |
=. |
|
R-squared |
= 0.1584 |
|
Root MSE |
= .1085 |
dpopgr |
Coef. |
Robust Std. Err. |
t |
P>|t| |
[95% Conf. Interval] |
|
collrate |
.5625516 |
.0654039 |
8.60 |
0.000 |
.4343121 |
.6907911 |
mfgrate |
.0134073 |
.0207008 |
0.65 |
0.517 |
-.0271813 |
.053996 |
ur |
-.0814677 |
.0801316 |
-1.02 |
0.309 |
-.2385844 |
.0756489 |
pcinc |
2.12e-06 |
3.25e-06 |
0.65 |
0.514 |
-4.26e-06 |
8.50e-06 |
educsh |
.1078933 |
.0193862 |
5.57 |
0.000 |
.0698822 |
.1459044 |
hwsh |
-.0492989 |
.0415435 |
-1.19 |
0.235 |
-.1307546 |
.0321568 |
polsh |
.2709651 |
.1762385 |
1.54 |
0.124 |
-.0745914 |
.6165217 |
nwrate |
-.0963006 |
.0156924 |
-6.14 |
0.000 |
-.1270692 |
-.0655321 |
logpop |
-1.570676 |
1.056792 |
-1.49 |
0.137 |
-3.642762 |
.5014103 |
logpop2 |
.2330949 |
.2197 |
1.06 |
0.289 |
-.197678 |
.6638678 |
logpop3 |
-.014022 |
.0222803 |
-0.63 |
0.529 |
-.0577077 |
.0296637 |
logpop4 |
.0002559 |
.0011035 |
0.23 |
0.817 |
-.0019078 |
.0024196 |
logpop5 |
2.34e-06 |
.0000214 |
0.11 |
0.913 |
-.0000396 |
.0000443 |
_cons |
3.515146 |
1.989501 |
1.77 |
0.077 |
-.3857338 |
7.416025 |
The results are similar to the p = 1 regression, but we lost the significance of mfgrate and hwsh. The joint test for the fifth degree polynomial in log - pop is significant, but the last term is not, suggesting that the fourth degree polynomial is a good place to stop.
. test (logpop = 0) (logpop2 = 0) (logpop3 = 0) (logpop4 = 0) (logpop5 = 0);
(1) logpop = 0
(2) logpop2 = 0
(3) logpop3 = 0
(4) logpop4 = 0
(5) 7 logpop5 = 0
F(5, 3088) = 25.88 Prob > F = 0.0000
. test logpop5 = 0;
(1) logpop5 = 0 F(1,3088) = 0.01
Prob > F = 0.9127
Replication of TABLE IX, Wheeler(2003, p. 91) entitled: County employment Growth Robustness Check. We will only replicate the first and last columns of that table for p = 1 and p = 5.
For p=1:
. reg dempgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logemp, vce(r);
Linear regression Number of obs = 3102
F(9,3092) = 36.11
Prob > F = 0.0000
R-squared = 0.1108
Root MSE = .13223
Robust
|
The higher the proportion of the adult resident population (i. e. of age 25 or older) with a bachelor’s degree or more (collrate); and the higher the proportion of total employment in manufacturing (mfgrate) the higher the County employment growth rate (over the period 1980-1990). The unemployment rate (ur) and Per capita income (pcinc) are not significant. The higher the share of local government expenditures going to education (educsh) and police protection (polsh), the higher the County employment growth rate, whereas the higher the share of local government expenditures going to roads and highways (hwsh), the lower is the County employment growth rate. Except for (educsh), these local government expenditures shares are not significant. The higher the proportion of the resident population that are non-white (nwrate), the lower is the County educsh growth rate. The larger the size of the county as measured by the log of total resident educsh (logemp), the higher is the County employment growth rate. This is significant.
. test logemp = 0;
(1) logemp = 0 F(1,3092) = 7.05
Prob > F = 0.0080
Adding a polynomial of degree 5 in size as measured by logemp, we get for p = 5:
. reg dempgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logemp logemp2 logemp3 logemp4 logemp5, vce(r);
Linear regression |
Number of obs |
= 3102 |
F(13, 3088) |
= 33.47 |
|
Prob > F |
= 0.0000 |
|
R-squared |
= 0.1295 |
|
Root MSE |
= .13091 |
dempgr |
Coef. |
Robust Std. Err. |
t |
P>|t| |
[95% Conf. Interval] |
|
collrate |
.7127472 |
.0798073 |
8.93 |
0.000 |
.5562665 |
.8692279 |
mfgrate |
.0162264 |
.0256496 |
0.63 |
0.527 |
-.0340656 |
.0665184 |
ur |
.0654624 |
.0829589 |
0.79 |
0.430 |
-.0971977 |
.2281226 |
pcinc |
-5.60e-06 |
3.67e-06 |
-1.52 |
0.128 |
-.0000128 |
1.60e-06 |
educsh |
.1677939 |
.0231205 |
7.26 |
0.000 |
.1224607 |
.2131271 |
hwsh |
-.034885 |
.049391 |
-0.71 |
0.480 |
-.1317276 |
.0619577 |
polsh |
.2933336 |
.1922457 |
1.53 |
0.127 |
-.0836087 |
.6702759 |
nwrate |
-.1540241 |
.0175901 |
-8.76 |
0.000 |
-.1885135 |
-.1195347 |
logemp |
-2.760358 |
.8853777 |
-3.12 |
0.002 |
-4.496347 |
-1.024369 |
logemp2 |
.5122333 |
.1992707 |
2.57 |
0.010 |
.1215167 |
.9029498 |
logemp3 |
-.044739 |
.0218277 |
-2.05 |
0.040 |
-.0875373 |
-.0019406 |
logemp4 |
.0018485 |
.0011644 |
1.59 |
0.113 |
-.0004346 |
.0041316 |
logemp5 |
-.000029 |
.0000242 |
-1.20 |
0.231 |
-.0000765 |
.0000185 |
_cons |
5.430814 |
1.540746 |
3.52 |
0.000 |
2.409824 |
8.451804 |
The results are similar to the p = 1 regression, but we lost the significance of mfgrate. The joint test for the fifth degree polynomial in logpop is significant, but the last term is not, suggesting that the fourth degree polynomial is a good place to stop.
. test (logemp = 0) (logemp2 = 0) (logemp3 = 0) (logemp4 = 0) (logemp5 = 0);
(1) logemp = 0
(2) logemp2 = 0
(3) logemp3 = 0
(4) logemp4 = 0
(5) logemp5 = 0
F(5, 3088) = 18.27 Prob > F = 0.0000 . test logemp5 = 0;
(1) logemp5 = 0 F(1,3088) = 1.44
Prob > F = 0.2307
b. Breusch-Pagan test for heteroskedasticity for the specification with a fourth degree polynomial in log(size) in TABLE VIII, Wheeler(2003, p. 90).
. reg dpopgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logpop logpop2 logpop3 logpop4;
Source I SS df MS Number of obs = 3102
................................................................................ F(12,3089) = 48.43
Model 6.84020955 12 .570017462 Prob > F = 0.0000
Residual 36.3559406 3089 .011769485 R-squared = 0.1584
................................................................................ Adj R-squared = 0.1551
Total I 43.1961502 3101 .013929749 Root MSE = .10849
. estat hettest logpop logpop2 logpop3 logpop4, rhs normal;
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance
Variables: logpop logpop2 logpop3 logpop4 collrate mfgrate ur pcinc educsh hwsh polsh nwrate chi2(12) = 589.14 Prob > chi2 = 0.0000
Breusch-Pagan test for heteroskedasticity for the specification with a 4th degree polynomial in log(size) in TABLE IX, Wheeler(2003, p. 91).
. reg dempgr collrate mfgrate ur pcinc educsh hwsh polsh nwrate logemp logemp2 logemp3 logemp4 ;
3102
38.23
0.0000
0.1293
0.1259
.1309
dempgr |
Coef. |
Std. Err. |
t |
P>|t| |
[95% Conf. Interval] |
|
collrate |
.7040415 |
.0626979 |
11.23 |
0.000 |
.5811078 |
.8269753 |
mfgrate |
.0156912 |
.0242125 |
0.65 |
0.517 |
-.0317831 |
.0631654 |
ur |
.0691242 |
.0802564 |
0.86 |
0.389 |
-.0882371 |
.2264855 |
pcinc |
-4.95e-06 |
3.06e-06 |
-1.61 |
0.106 |
-.000011 |
1.06e-06 |
educsh |
.1674244 |
.0216266 |
7.74 |
0.000 |
.1250204 |
.2098283 |
hwsh |
-.034799 |
.0507792 |
-0.69 |
0.493 |
-.1343634 |
.0647654 |
polsh |
.2889395 |
.1573668 |
1.84 |
0.066 |
-.0196147 |
.5974937 |
nwrate |
-.1516358 |
.0182735 |
-8.30 |
0.000 |
-.1874653 |
-.1158063 |
logemp |
-1.730393 |
.3710692 |
-4.66 |
0.000 |
-2.45796 |
-1.002826 |
logemp2 |
.2785811 |
.0599367 |
4.65 |
0.000 |
.1610613 |
.3961009 |
logemp3 |
-.0189696 |
.0042326 |
-4.48 |
0.000 |
-.0272686 |
-.0106706 |
logemp4 |
.000464 |
.0001103 |
4.21 |
0.000 |
.0002478 |
.0006802 |
_cons |
3.666787 |
.8526094 |
4.30 |
0.000 |
1.995049 |
5.338526 |
. estat hettest logemp logemp2 logemp3 logemp4, rhs normal;
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance
Variables: logemp logemp2 logemp3 logemp4 collrate mfgrate ur pcinc educsh hwsh polsh nwrate chi2(12) = 425.82 Prob > chi2 = 0.0000
References
Johnston, J. (1984), Econometric Methods, 3rd. Ed., (McGraw-Hill: New York).
Kim, J. H. (1991), “The Heteroscedastic Consequences of an Arbitrary Variance for the Initial Disturbance of an AR(1) Model,” Econometric Theory, Solution 90.3.1, 7: 544-545.
Kmenta, J. (1986), Elements of Econometrics (Macmillan: New York).
Koning, R. H. (1992), “The Bias of the Standard Errors of OLS for an AR(1) Process with an Arbitrary Variance on the Initial Observations,” Econometric Theory, Solution 92.1.4, 9: 149-150.