Springer Texts in Business and Economics

Moment Generating Function (MGF)

a. For the Binomial Distribution,

Подпись: n-XMx(t) = E(eXt) = XX) eX‘0X (1 - 0)

X=0

Подпись: = E X (1 - ™)n X=0 X/ tn -X

= [(1 - 0) + 0e‘]

where the last equality uses the binomial expansion (a + b)n =

P ( v I aXbn-X with a = 0e‘ and b = (1 - 0). This is the fundamental x=o X /

image095

relationship underlying the binomial probability function and what makes it a proper probability function. b. For the Normal Distribution,

completing the square

Mx(t) = 1 f °° e-222{[x-(^+ta2)]2-(^+ta2)2+^1 dx

os/2rr J-i

_ e"2O2 [^2-^2-2^ta2-tV]

The remaining integral integrates to 1 using the fact that the Normal den­sity is proper and integrates to one. Hence Mx(t) = e^*+ 2°2*2 after some cancellations.

image096

c. For the Poisson Distribution,

= e-X X ^ _ X = eA(e‘-!)

^ X!

X=0

X

where the fifth equality follows from the fact that X = ea and in this

X=0 '

case a = Xef This is the fundamental relationship underlying the Poisson distribution and what makes it a proper probability function.

d. For the Geometric Distribution,

1 1

Mx(t) = E(eXt) = J2 ™(1 _ ™)X-1 eXt = ^(1 _ 0)X-1e(X-1V

X=1 X=1

Подпись: 0e‘ 1 _ (1 _ 0)Є* = 0e‘£ [(1 _ 0) ef-1

X=1

1

where the last equality uses the fact that aX-1 = ^ and in this case

x=1 a

a = (1 —0)є*. This is the fundamental relationship underlying the Geometric distribution and what makes it a proper probability function.

e. For the Exponential Distribution,

fi 1

MX(t) = E(eXt) = 1 e-X/e eXtdx

J о Є

Подпись: 4 eJo Подпись: e“X[j -*ldx

image100

1 C1

last integral, we get

Mx(1) = У” =(1 -

where we substituted "/(1 — "t) for the usual ". The x2 distribution is Gamma with а = 2? and " = 2. Hence, its MGF is (1 — 2t)-r/2. g. This was already done in the solutions to problems 5, 6, 7, 9 and 10.

Добавить комментарий

Springer Texts in Business and Economics

The General Linear Model: The Basics

7.1 Invariance of the fitted values and residuals to non-singular transformations of the independent variables. The regression model in (7.1) can be written as y = XCC-1" + u where …

Regression Diagnostics and Specification Tests

8.1 Since H = PX is idempotent, it is positive semi-definite with b0H b > 0 for any arbitrary vector b. Specifically, for b0 = (1,0,.., 0/ we get hn …

Generalized Least Squares

9.1 GLS Is More Efficient than OLS. a. Equation (7.5) of Chap. 7 gives "ois = " + (X'X)-1X'u so that E("ois) = " as long as X and u …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.