Springer Texts in Business and Economics

ML Estimation of Linear Regression Model with AR(1) Errors and Two

Observations. This is based on Baltagi and Li (1995).

a. The OLS estimator of " is given by

22

"ols = Y^ xiyi/X)x2 = (y1x1 C y2x2)/ (x1 + x2) . i=1 i=1

b. The log-likelihood function is given by logL = — log 2л — log с2 — (1/2) log(1 — p2) — (u2 — 2pu1u2 + u2) /2o2(1 — p2); setting @logL/@o2 = 0 gives сі2 = (u2 — 2pu1u2 + u2) /2(1 — p2); setting @logL/@p = 0 gives po2(1 — p2) + u1u2 + p2u1u2 — pu2 — pu1 = 0; substituting 02 in this last equation, we get p = 2u1u2/ (u2 + u2); setting @logL/@" = 0 gives u2(x2 — px1) + u1 (x1 — px2) = 0; substituting p in this last equation, we get (u1x1 — u2x2) (u2 — u2) = 0.Notethatu1 = u2 impliesap of ±1,and this is ruled out by the stationarity of the AR(1) process. Solving (u1x1 —u2x2) = 0 gives the required MLE of ":

"mle = (y1x1 — y2x2)/ (x1 — x^ .

c. By substituting "mle intou1 andu2, onegetsir 1 = x2(x1y2 —x2y1)/ (x2 — x2) and u2 = x1(x1y2 — x2y1)/ (x1 — x|), which upon substitution in the expression for p give the required estimate of p : p = 2x1x2/ (x2 + x2).

d. If x1 ! x2, with x2 ф 0, then p! 1. For "mle, we distinguish between two cases.

(i) For yi = y2, " mle! y2/(2x2), which is half the limit of " ols! yilx2. The latter is the slope of the line connecting the origin to the observation

(x2,y2).

(ii) For y1 ф y2, "mle! ±1, with the sign depending on the sign of x2, (yi — y2), and the direction from which x1 approaches x2. In this case, "ols! y/x2, where y = (y1 + y2)/2. This is the slope of the line connecting the origin to (x2, y).

Similarly, if x1 ! —x2, with x2 ф 0, then p! — 1. For "mle, we distinguish between two cases:

(i) For y1 = — y2, "mle! y2/(2x2), which is half the limit of "ols!

y2/x2.

(ii) For y1 ф —y2, "mle! ±1, with the sign depending on the sign of x2, (y1 + y2), and the direction from which x1 approaches —x2. In this case, "ols! (y2 — y1)/2x2 = (y2 — y1)/(x2 — x1), which is the standard formula for the slope of a straight line based on two observations. In conclusion, "ols is a more reasonable estimator of " than "mle for this two-observation example.

Добавить комментарий

Springer Texts in Business and Economics

The General Linear Model: The Basics

7.1 Invariance of the fitted values and residuals to non-singular transformations of the independent variables. The regression model in (7.1) can be written as y = XCC-1" + u where …

Regression Diagnostics and Specification Tests

8.1 Since H = PX is idempotent, it is positive semi-definite with b0H b > 0 for any arbitrary vector b. Specifically, for b0 = (1,0,.., 0/ we get hn …

Generalized Least Squares

9.1 GLS Is More Efficient than OLS. a. Equation (7.5) of Chap. 7 gives "ois = " + (X'X)-1X'u so that E("ois) = " as long as X and u …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.