Springer Texts in Business and Economics

Asymptotic Variances for Predictions and Marginal Effects

Two results of interest after estimating the model are: the predictions F(x'в) and the marginal effects dF/dx = f (Xв) в• For example, given the characteristics of an individual x, we can predict his or her probability of purchasing a car. Also, given a change in x, say income, one can estimate the marginal effect this will have on the probability of purchasing a car. The latter effect is constant for the linear probability model and is given by the regression coefficient of income, whereas for the probit and logit models this marginal effect will vary with the Xj’s, see (13.7) and (13.8). These marginal effects can be computed with Stata using the dprobit command. The default is to compute them at the sample mean x. There is also the additional problem of computing variances for these predictions and marginal effects. Both F(xв) and f (x[17] в)в are nonlinear functions of the в’s. To compute standard errors, we can use the following linear approximation which states that whenever в = F(в) then the asy. var(e) = (dF/двуУ(l3)(dF/d/3). For the predictions, let z = X/3 and denote by F = F(X/3) and f = f (x'P), then

dF/dp = (dF/dz)(dz/dP) = fx and asy. var(F) = f2x' У (ft) x.

For the marginal effects, let р = f/3, then

asy. var(p) = (д'р/др )У(Р)(др/др )' (13.30)

where др/др' = fIk + P(df/dz)(dz/d3') = fIk + (df/dz)(Px').

For the probit model, дf/дz = дф/дz = —zф• So, др/дв = ф[Ік — zвX and

asy. var(3) = ф [Ik — ХррХ]У(P)[Ik — x'PPx']' (13.31)

For the logit model, f = Л(1 — Л), so

дp/дz = (1 — 2Л )(дЛ ^z) = (1 — 2Л )(f) = (1 — 2Л )Л (1 — Л)

др/др = Л (1 — Л )[Ik + (1 — 2Л )3x']

and (13.30) becomes

asy. var(3) = [Л (1 — Л )]2 [Ik + (1 — 2Л)px']V 0)[h + (1 — 2Л)px' ]' (13.32)

Добавить комментарий

Springer Texts in Business and Economics

The General Linear Model: The Basics

7.1 Invariance of the fitted values and residuals to non-singular transformations of the independent variables. The regression model in (7.1) can be written as y = XCC-1" + u where …

Regression Diagnostics and Specification Tests

8.1 Since H = PX is idempotent, it is positive semi-definite with b0H b > 0 for any arbitrary vector b. Specifically, for b0 = (1,0,.., 0/ we get hn …

Generalized Least Squares

9.1 GLS Is More Efficient than OLS. a. Equation (7.5) of Chap. 7 gives "ois = " + (X'X)-1X'u so that E("ois) = " as long as X and u …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.