СПЕЦИАЛЬНЫЕ СПОСОБЫ СВАРКИ И РЕЗКИ

Электронно-лучевая сварка. Сущность и область применения электронно­лучевой сварки

Сущность электронно-лучевой сварки (ЭЛС) состоит в исполь­зовании кинетической энергии направленного потока электро­нов, движущихся в вакууме (рабочий вакуум 10“2... 10-3 Па) без столкновений с остаточными молекулами воздуха. При достиже­нии потоком электронов, ускоренных электрическим полем с разностью потенциалов 10... 100 кВ и более, поверхности свари­ваемой детали подавляющая часть кинетической энергии элект­ронов превращается в тепловую. Вакуум применяют как для эф­фективной генерации электронного пучка и беспрепятственного прохождения его до свариваемой детали, так и для создания инертной среды без вредных примесей (кислорода, азота и водо­рода).

Это позволяет получать сварные соединения высокого каче­ства при сварке таких химически активных сплавов, как титано­вые, циркониевые, ниобиевые, молибденовые.

При выходе электронного луча в атмосферу рассеяние пучка электронов столь велико, что не удается увеличить рабочее рас­стояние от пушки до изделия больше чем на 30 мм, поэтому свар­ку с использованием электронного луча производят только в ва­куумных камерах.

Электронный луч в зоне сварки обладает высокой мощностью, превосходящей традиционные сварочные источники нагрева, ус­тупая только лучу лазера.

Впервые использовать сконцентрированные пучки электронов в вакууме для сварки предложил в Германии К. Г. Штайгервальд, а в СССР Н. А. Ольшанский (1959 г.).

В специальных электронно-лучевых установках Штайгервальда электронные пучки формировались магнитными линзами после излучения электронов из термокатодов и ускорения их в поле с разностью потенциалов до 100 кВ. Плотность мощности в них пре­восходила 108 Вт/см2, что на 2 — 3 порядка выше концентрации мощности в сварочной дуге. Изменяя плотность мощности и уп­равляя процессами теплоотвода, можно производить обработку различных металлов и сплавов в твердом, жидком и парообраз­ном состояниях. Электроны, обладающие достаточно высокой энер­гией, могут проникать в обрабатываемый металл на некоторую глубину. Максимальная глубина, пройдя которую электрон теряет
свою энергию, зависит от ускоряющего напряжения и плотности металла:

5 = 2,35 • 10-|2У2/р,

где 5 — глубина проникновения, см; U — ускоряющее напряже­ние, В; р — плотность обрабатываемого металла, г/см3. Для стали с плотностью 7,8 г/см3 при U - 60 кВ 8 = 12 мкм.

Энергия электронного луча может преобразоваться в тепловую внутри тонкого поверхностного слоя. Взаимодействие электрон­ного луча с обрабатываемым металлом вызывает ряд явлений, оказывающих влияние на технологию сварки и конструкцию сва­рочных установок. Тепловое и рентгеновское излучения, отражен­ные, вторичные и тепловые электроны снижают эффективно ис­пользуемую долю энергии электронного луча.

Значения эффективного КПД при ЭЛС составляют 0,85...0,95. Таким образом, электронный луч, по сравнению с другими сва­рочными источниками энергии, самый эффективный. Проплав­ление существенно ограничено по глубине и в поперечном сече­нии близко по форме к полусфере. Такой процесс применяют для сварки металлов малых толщин (до 3 мм). Переход от сварки ме­таллов малых толщин к однопроходной сварке металлов больших толщин осуществляют при условии достижения критической плот­ности мощности q2, для металлов q2 = 105... 106 Вт/см2.

В этом случае эффективная мощность электронного луча уже не может быть отведена в глубь металла за счет теплопроводности и тепловое равновесие поверхности нагрева наступает при испа­рении части металла. Давление паров на 3 — 5 порядков превышает давление электронного луча. При плотности мощности пучка элек­тронов 105...107 Вт/см2 в зоне его воздействия развивается уси­ленное испарение металла, поверхность ванны прогибается и в жидком металле формируется канал-кратер на всю глубину ванны также, как и при сварке лучом лазера.

1 2

Электронно-лучевая сварка. Сущность и область применения электронно­лучевой сварки

а

б

Чем выше плотность мощности луча, тем сильнее нагрев по­верхности сварочной ванны и эффективнее передача энергии элек­тронов по всей толщине свариваемого металла. Электронно-лучевое воздействие в диапазоне плотности мощности q2 = 105... 106 Вт/см2 характеризуется явлением узкого проплавления с соотношением глубины проплавления к его ширине до 10: 1 и более (рис. 4.1).

Рис. 4.1. Типичная форма попереч­ного сечения сварного шва в ме­

талле:

а — выполненного аргонодуговой свар­кой; б — электронным лучом; 1,2 —

литой металл шва

Высокая концентрация энергии позволяет получать сварные швы с малой зоной термического влияния. Поперечное сечение шва имеет слабосходящиеся или параллельные боковые стенки, что обеспечивает минимальные угловые деформации. Формирование сварного шва при ЭЛС имеет ряд особенностей, обусловленных испарением свариваемого металла и силовым воздействием дав­ления паров на расплавленный металл.

При формировании сварного шва наблюдается два типа про­цессов: периодическое испарение (при частоте до 10 кГц) и коле­бания жидкого металла в сварочной ванне за счет подплавления передней стенки ванны (при частоте 1... 100 Гц). Образование кра­тера на всю глубину проплавления позволяет получить исключи­тельно малый объем сварочной ванны и, следовательно, мини­мальные деформации свариваемых деталей. Применение высоких скоростей сварки обеспечивает минимальное термическое воздей­ствие на свариваемый металл в околошовной зоне, а высоких ско­ростях кристаллизации при эффективном теплоотводе — получе­ние высоких механических свойств сварных соединений.

Области применения ЭЛС.

• сварка деталей из химически активных и тугоплавких метал­лов и сплавов;

• сварка деталей и узлов из термически упрочняемых материа­лов, когда нежелательна, затруднена или невозможна термичес­кая обработка;

• сварка деталей после завершающей механической обработки при необходимости обеспечения минимальных сварочных дефор­маций;

• сварка толстостенных и тонкостенных конструкций ответствен­ного назначения.

Наиболее широко в мире освоено промышленное применение ЭЛС в авиакосмической промышленности, ядерной энергетике, энергетическом машиностроении, турбиностроении, приборост­роении, автомобильной промышленности при массовом изготов­лении подшипников.

СПЕЦИАЛЬНЫЕ СПОСОБЫ СВАРКИ И РЕЗКИ

Установки для магнитно-импульсной сварки

На рис. 13.3 представлена одна из наиболее распространенных функциональных схем магнитно-импульсных установок. Установ­ка состоит из накопителя энергии /, зарядного устройства 2, за­датчика напряжений 3, блока поджига 4, коммутирующего уст­ройства 5, …

Инструмент и оснастка

Установки для МИС аналогичны и отличаются только конст­рукцией рабочего органа — индуктора. Индуктор — это основной инструмент при МИС, который со­стоит из токопроводящей спирали, токоподводов, изоляции и элементов механического усиления. …

Технология магнитно-импульсной сварки

Подготовка поверхностей под сварку включает в себя механи­ческую обработку металлическими щетками или наждачной шкур­кой, химическую очистку свариваемых поверхностей — обезжи­ривание. С увеличением шероховатости поверхности прочность сварного соединения возрастает, но появдяется …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.