Солнечная энергия
В результате солнечной радиации на поверхность Земли ежегодно поступает в 3 тыс. раз больше энергии, чем потребляется в мире. В настоящее время солнечная энергия используется с помощью термоэлектрического и фотоэлектрического преобразования. Термоэлектрические установки к 1997 г. были в основном использованы в США. Их общая мощность составляла немногим более 330 МВт. Более широко распространены фотоэлектрические преобразователи. Наибольшие мощности таких энергетических установок у Японии (38 МВт), Индии (28 МВт), Германии (17 МВт), Австралии (13 МВт), Южной Африки (11 МВт) и Мексики (10,3 МВт). Широкое распространение получили в мире солнечные установки горячего водоснабжения и отопления. В Австралии, например, используются 250 тыс. бытовых солнечных водоподогревателей, в Китае насчитывается 400 производителей солнечных панелей с их годовым выпуском около 2 млн м2, в Индии эксплуатируются 400 тыс. солнечных водоподогревателей и 430 тыс. солнечных печей для приготовления пищи. В Израиле за счет использования различных видов солнечных энергетических установок ежегодно экономится свыше 400 тыс. т у. т. В ЮАР в настоящее время реализуется программа оснащения 16 400 школ солнечными осветительными установками. В США в 1997 г. президентом страны было объявлено о реализации программы, предусматривающей сооружение к 2010 г. одного миллиона солнечных термических и фотоэлектрических систем на крышах общественных и жилых зданий для отопления и электроснабжения.
Геотермальная энергия является одним из распространенных видов нетрадиционных источников энергии, которая в промышленном масштабе начала использоваться примерно 100 лет назад. Установленная мощность всех геотермальных электростанций (ГеоТЭС) в мире составляет немногим более 7 ГВт, а их годовая выработка электроэнергии – 42 ТВт∙ч. Прямое использование геотермальной энергии без ее преобразования в электрическую оценивается в 10 ГВт (тепловых) с готовым производством тепловой энергии 35 ТВт∙ч (тепловых). Примерно 40 % всей мощности ГеоТЭС (2,8 ГВт) построено в США, далее следуют Филиппины (1,4 ГВт), Мексика (0,7 ГВт), Италия и Япония (по 0,5 ГВт), Индонезия (0,3 ГВт).
Ветроэнергия. Интерес к использованию энергии ветра на современной технической основе можно отнести к середине 70-х гг., когда в мире разразился нефтяной кризис. За последние примерно 25 лет в мире были построены ветроэнергетические установки (ВЭУ) общей установленной мощностью более 6 ГВт с годовой выработкой электроэнергии (1996 г.) около 10 ГВт. Наибольшие мощности ВЭУ сосредоточены в США (1,8 ГВт), Германии (1,5 ГВт), Индии (0,8 ГВт), Дании (0,8 ГВт). Огромным ветроэнергетическим потенциалом располагают Китай (250–300 ГВт), Канада (4,5 ГВт), Индия (20 ГВт), США (734 ГВт).
Оценивая современное и перспективное использование нетрадиционных источников энергии, мировая научная общественность приводит следующие цифры.
Таблица 1.1
Современное и прогнозируемое использование новых
и возобновляемых источников энергии в мире млрд кВт∙ч
Источник |
Конец ХХ в. |
ХХI в. |
Солнце |
2-3 |
2 000-5 000 |
Геотермальная энергия |
55 |
1 000-5 000 |
Ветер |
2 |
1 000-5 000 |
Приливы |
0,4 |
3-60 |
Энергия волн |
0 |
10 |
Тепловая энергия океанов |
0 |
1 000 |
Биомасса |
550-700 |
2 000-5 000 |
Древесное топливо |
10 000-12 000 |
15 000-20 000 |
Древесный уголь |
1 000 |
2 000-5 000 |
Торф |
20 |
1 000 |
Тягловые животные |
30 (в Индии) |
1 000 |
Горючие сланцы |
15 |
500 |
Битуминозные пески |
130 |
1 000 |
Гидроэнергия |
1 500 |
3 000 |
Итого (округленно) |
12 000-13 000 |
30 000-53 000 |