Промышленный фотосинтез
По масштабам использования солнечной энергии нам еще далеко до растений. Ежегодно в деревьях, кустарниках, траве, водорослях накапливается 3∙1021 Дж законсервированной с помощью фотосинтеза энергии. Это в 10 раз больше того, что тратится за тот же срок человечеством.
Заманчиво, конечно, использовать живой фотохимический потенциал. Однако не губить же зеленые богатства планеты? Нужно создавать в энергетические плантации. В будущем, видимо, после решения продовольственной проблемы быстрорастущие виды растений станут высаживать специально «на откорм» микроорганизмам и в результате их жизнедеятельности получат ценное топливо – метан.
Впрочем, КПД фотосинтеза растений очень мал – в среднем 0,1 %. Есть другие перспективные направления биогелиоэнергетики. Например, несколько лет назад открыто явление биофотолиза – разложение воды на водород и кислород под действием солнечного света при активном посредничестве выделенных из растений фотосинтезирующих веществ. Другой необходимый компонент – фермент гидрогенеза, имеющий сродство к атомам водорода. Именно он «убеждает» фотосинтезирующие вещества приступить к гидролизу. Задача исследователей – научиться создавать условия, при которых этот процесс идет стабильно. Ведь изъятые из клетки хлоропласты быстро разрушаются на свету.
Довольно хорошо отработаны микробиологические способы разложения воды. Открыты и уже используются микроорганизмы, результат жизнедеятельности которых – водород. В специальных емкостях для них размножают корм – микроскопические водоросли определенных видов. Водоросли поглощают солнечный свет, осуществляют фотосинтез, а микроорганизмы, поедающие их, разлагают воду, выделяют водород. Водород – это экологически чистое химическое топливо. При его сгорании получается исходный продукт – вода. Энергетический круговорот воды может продолжаться до тех пор, пока светит Солнце.
Успешному развитию фотоэлектрического метода преобразования солнечной энергии в электрическую в наземных условиях способствовала благоприятная ситуация в связи с развитием космической техники, ростом потребностей в источниках питания, особенно автономных потребителей небольшой мощности, расположенные в местах, удаленных от централизованных энергосистем. Одной из определяющих характеристик возможности широкого использования фотоэлектрических преобразователей в народном хозяйстве является их удельная стоимость. Ближайшей задачей является обеспечение КПД фотопреобразователей на монокристаллическом кремнии до 12 % при стабильности параметров в течение 15-20 лет. В перспективе КПД солнечных элементов на кремнии можно повысить до 25 % при обычной освещенности и до 30 % при концентрированном солнечном излучении. Для повышения КПД ставится вопрос о замене кремния арсенидом галлия. В этом случае КПД солнечного элемента получен 26,6 % и ожидается его повышение до 30 - 35 %. По мнению экспертов, ежегодное производство солнечных элементов превысит 600 МВт в 2000 г.
Предполагается, что в Японии через 20 лет будет производиться фотоэлектрическая система с общей установленной мощностью 4600 МВт.
Активно осуществляется внедрение фотоэлектрических систем в энергетику Европы. Крупнейшая итальянская фирма «Италосоляр» выпускает солнечные фотоэлектрические модули общей мощностью 1 МВт. Принципиально важно и то, что потребитель получает не отдельные модули, а фотоэлектрическую систему вместе с электропотребляющим устройством – холодильником, насосом для перекачки воды, телевизором, туристическим домиком. В России выпускается очень мало солнечных элементов, которых хватило пока лишь для того, чтобы покрыть крыши пяти экспериментальных домов.