Раздел - Энергоснабжение

Малые гидроэлектростанции

Малые гидроэлектростанции (МГЭС) с единичной мощностью агрегата от 0,1 до 10 МВт суммарной мощностью до 30 МВт также обычно относят к НВИЭ. По отчетным данным, 1990 г. в России оставалось в эксплуатации 55 МГЭС суммарной мощностью 545 МВт. Практически все эти МГЭС находятся в Европейской части России.

Основные направления развития малой гидроэнергетики на ближайшие годы следующие:

- строительство малых ГЭС при сооружаемых комплексных гидроузлах;

- модернизация и восстановление ранее существовавших МГЭС;

- сооружение МГЭС на существующих водохранилищах и малых реках, на имеющихся перепадах на каналах и трубопроводах подвода и отвода воды на объектах различного хозяйственного назначения.

В соответствии с проработками "Гидропроекта", выполненными в 1996 г., можно рассматривать в качестве первоочередных 42 МГЭС суммарной мощностью 490 МВт. В настоящее время разработаны проекты нескольких МГЭС, имеющих солидное экономическое обоснование. Главной задачей для их реализации является поиск и нахождение инвестиций.

Наиболее существенным препятствием для развития нетрадиционной электроэнергетики является ее неконкурентоспособность как следствие низкой эффективности производства электроэнергии на установках на НВИЭ. Отсюда – трудности привлечения инвестиций. Ориентация на традиционный путь бюджетного финансирования вряд ли перспективна. Требуется поиск нестандартных решений этой проблемы.

Помимо экономических, существуют и технические ограничения. Так, при подключении к энергосистеме нетрадиционных электростанций с нерегулируемой мощностью (ВЭС, СЭС, ПЭС, в некоторой мере МГЭС) для сохранения стабильности параметров энергосистемы их доля (по мощности) не должна превышать величины, оцениваемой в 10-15 %. Для нетрадиционных электростанций, присоединяемых к крупным энергосистемам, это ограничение не актуально, поскольку доля мощности этих электростанций не скоро сможет приблизиться к указанному пределу, но для изолированных энергоузлов оно должно учитываться уже теперь.

Этих технических ограничений не имеют геотермальные электростанции. ГеоТЭС на парогидротермах имеют постоянную мощность и могут являться системообразующими. Максимальная доля ГеоТЭС в системах Камчатскэнерго и Сахалинэнерго в перспективе будет определяться соотношением базовой мощности на основе ГеоТЭС и требуемой пиковой мощности, обеспечиваемой какими-либо маневренными энергоустановками.

Существуют и некоторые экологические ограничения на применение нетрадиционных электростанций, однако они значительно менее жесткие, чем для традиционных.

В целом развитие нетрадиционной электроэнергетики требует решения нескольких задач. К ним относятся:

- Создание опытных и опытно-промышленных электростанций. Речь идет об электростанциях мощностью 1-10 МВт (ГеоТЭС на геотермальной воде с температурой 100-200 °С, многоагрегатные ВЭС, СЭС) для отработки технологий производства электроэнергии и соответствующего оборудования, для приобретения опыта эксплуатации. Эти объекты являются науко - и капиталоемкими, а их создание и эксплуатация отнюдь не гарантируют получения прибыли. Изыскание инвестиций на подобные проекты в существующих экономических условиях представляется исключительно сложной задачей, не имеющей готовых решений.

- Развитие НИОКР. В зарубежных странах суммарные годовые бюджетные затраты на НИОКР в данной области составляют около 1 млрд долл., не считая расходов частных фирм и компаний. В странах-членах Международной Энергетической Ассоциации (МЭА) удельный вес расходов на НИОКР в области НВИЭ составляет 8 % от общего объема государственного бюджетного финансирования НИОКР в энергетическом секторе. В ряде стран этот показатель существенно выше: в Швеции 20 %, в Испании 23,5 %, в Германии 28,3 %, в Дании 44,4 %, в Португалии 51 %. Абсолютно приоритетной статьей всех затрат на НИОКР в области НВИЭ являются расходы на солнечную энергетику.

На этом фоне отечественные государственные и отраслевые расходы на НИОКР в сфере НВИЭ постоянно снижаются. Если в бывшем СССР 15-20 лет назад они были на порядок ниже, чем во многих зарубежных странах, то в России в 90-е гг. они снизились по крайней мере еще на порядок. Объем этих расходов не обеспечивает развитие научно-технического прогресса в данной сфере и поддерживает проведение НИОКР на критически минимальном уровне с угрозой утраты имеющегося научно-технического потенциала в ближайшем будущем. Между тем без опережающего развития НИОКР невозможно развитие данного направления.

- Создание законодательной и нормативной базы. В Законе РФ «Об энергосбережении» (1996) заложена правовая основа применения НВИЭ. Этот закон разрешает производителям электроэнергии, в том числе на основе НВИЭ, отпуск энергии в сети энергоснабжающих организаций, которые обязаны обеспечить прием этой энергии «в количествах и режимах, согласованных с энергоснабжающей организацией и региональной энергетической комиссией».

В настоящее время в Государственной Думе во втором чтении принят Закон РФ «О государственной политике в сфере использования нетрадиционных возобновляемых источников энергии». Принятие этого Закона и вступление его в силу в сочетании с упомянутым Законом "Об энергосбережении" составит минимально достаточную на данном этапе правовую, экономическую и организационную основу для развития НВИЭ в России.

В целом решение перечисленных выше задач необходимо для достижения в ближайшие 10-15 лет основной стратегической цели в данной области – создание нетрадиционных электростанций промышленного уровня мощности, опыт эксплуатации которых, а также опыт изготовления соответствующего оборудования позволят в последующий период перейти к их применению в масштабах, ощутимых в энергетике страны и особенно значимых для ряда ее регионов.

В ЭНИНе им. Г. М. Кржижановского – головном институте по использованию НВИЭ в отрасли – исследования развиваются главным образом в области геотермальной и солнечной энергетики. Под научным руководством ЭНИНа была создана первая в СССР Паужетская ГеоТЭС, построена в 1985 г. первая в стране экспериментальная солнечная электростанция мощностью 5 МВт в Крыму. Там же в 1987 г. ЭНИНом был создан уникальный экспериментальный комплекс по солнечному тепло - и хладоснабжению.

В 90-е гг., несмотря на трудности с финансированием НИР и существенное сокращение кадрового состава, ЭНИНом выполнен ряд разработок эффективных схемных решений ГеоТЭС и СЭС. Разработана комбинированная схема парогидротермальных ГеоТЭС, основанная на комбинации противодавленческой паровой турбины с турбиной на низкокипящем рабочем теле, что позволяет значительно снизить температуру конденсации, использовать тепло отсепарированной геотермальной воды и тем самым существенно, на 30-50 %, увеличить выработку электроэнергии. Вариант указанной комбинированной схемы рассматривается в тендере на строительство первой очереди Мутновской ГеоТЭС. Совместно с Калужским турбинным заводом разрабатывается эффективный метод преобразования тепловой энергии в двухфазных турбинах «полного потока». Этот метод повышает эффективность ГеоТЭС, а также может быть применен при утилизации тепла относительно невысокого потенциала независимо от первичного источника этого тепла. Применительно к ГеоТЭС на геотермальной воде с температурой 80-170 °С ЭНИНом совместно с Кировским заводом спроектирован энергомодуль мощностью 1-1,6 МВт на низкокипящем рабочем теле.

В области солнечной энергетики ЭНИН осуществлял руководство проектированием экспериментальной Кисловодской фотоэлектростанции мощностью 1 МВт. К сожалению, проектные работы не были доведены до завершения вследствие недостатка средств. ЭНИНом при участии некоторых конверсионных предприятий ведется разработка концепции и экспериментальная отработка на макетных образцах новой схемы солнечных энергоустановок и станций на основе комбинированного применения арсенид-галлиевых фотоэлектрических преобразователей, размещаемых в концентрированном потоке солнечного излучения, и термодинамического цикла преобразования теплоты, отводимой от фотопреобразователей при температуре 200-250 °С. Данная схема позволяет существенно повысить суммарный КПД преобразования солнечной энергии в электрическую по сравнению с применяемыми до сего времени схемами фотоэлектрических и термодинамических солнечных энергетических установок.

Все изложенное выше касалось перспектив применения нетрадиционных электростанций в составе централизованных систем производства энергии, составляющих основу современной электроэнергетики. Между тем этот аспект – только часть общей проблемы использования НВИЭ, не затрагивающий производство тепла для коммунально-бытовых нужд в системах теплоснабжения, а также децентрализованное энергоснабжение автономных потребителей. Обеспечение энергией таких потребителей в районах, лишенных централизованного энергоснабжения, представляет серьезную проблему. Из всех видов НВИЭ наиболее перспективными для децентрализованного энергоснабжения являются энергия ветра и солнца, распространенная повсеместно, хотя и неравномерно, и не имеющая такой локальной «привязки», как гидроэнергия, энергия приливов, геотермальная энергия.

Децентрализованное энергообеспечение на основе НВИЭ находит в мире широкое распространение, а его суммарный энергетический эффект не меньше того, который достигнут в сфере централизованного энергоснабжения.

Развитие нетрадиционной энергетики является важным направлением в системе энергоснабжения России.

Основными направлениями в области нетрадиционной энергетики являются:

– создание производства надежного и эффективного оборудования для малых ГЭС, солнечных, геотермальных, ветровых, приливных и других электростанций и энергоустановок;

– организация специализированных подразделений по строительству, эксплуатации и обслуживанию специфического оборудования нетрадиционной энергетики;

– обеспечение надежного энергоснабжения на базе НВИЭ путем отработки режимов эксплуатации, комбинирования различных энергоисточников, аккумулирования энергии;

– поиск и определение источников и способов финансирования проектов, рентабельность которых не всегда очевидна.

В конце 80-х - начале 90-х гг. Минэнерго СССР, а затем Минтопэнерго России и РАО «ЕЭС России» проявляли интерес к развитию нетрадиционной энергетики: был выполнен большой объем проектных и научно-исследовательских работ, начат ряд строек объектов нетрадиционной энергетики и т. д.

Однако в последние годы РАО "ЕЭС России" утратило интерес к этим проблемам, в основном из-за трудностей с финансированием указанных работ.

Тем не менее, следует отметить рост интереса к нетрадиционной энергетике у региональных АО-энерго и местных администраций. Так, в последнее время программы по нетрадиционной энергетике разрабатываются в Якутии и на Чукотке.

В 2000 г. РАО «ЕЭС России» с участием Корпорации «ЕЭЭК», ОАО «Карелэнерго», АО «НПО Нетраэл» и Администрации Республики Карелии было организовано отраслевое совещание-выставка «Вопросы энергоэффективности и использования местных возобновляемых энергоресурсов». В совещании-выставке приняли участие около 200 человек из многих регионов России, а также представители Белоруссии, Украины, Германии, Норвегии, Дании, Финляндии. В области НВИЭ были обсуждены вопросы законодательной базы и стимулирования этого направления энергетики, правовые вопросы независимых энергопроизводителей, отдельные и общие вопросы развития малой гидроэнергетики, ветроэнергетики, использования биомассы, в частности отходов лесопереработки, торфа и т. д., включая топливные элементы и тепловые насосы.

Раздел - Энергоснабжение

Виды теплогенерации в Украине на 2016 год и стоимость

В 2016 году частные потребители тепла в Украине получают тепло из следующих источников: 1. Наиболее распространенный - от электричества, электрокотлы, электрокамины, электрообогреватели... Источником без подробностей в большинстве случаев является "энергия …

Вакуумные трубки 1800 на 58мм — мощность, окупаемость

Более полугода изучаю вакуумные солнечные трубки длиной 1800 внешним диаметром 58мм внутренним 43-44мм. Внутренний объем трубки - 2,7 литра. Иногда на активном ярком солнце мощность трубки показывало около 130-150Вт, но …

Закрытые системы геотермального теплоснабжения

Закрытые геотермальные системы, обеспечивающие только горячее водоснабжение. В зависимости от расположения места сброса и источника питьевой воды могут быть использованы три вида схемного решения. Схема (рис. 2.6.). Геотермальная вода подается …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Оперативная связь

Укажите свой телефон или адрес эл. почты — наш менеджер перезвонит Вам в удобное для Вас время.