РАСЧЕТ СВАРНЫХ СОЕДИНЕНИЙ С УЧЕТОМ КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ

ОСНОВНЫЕ РАСЧЕТНЫЕ ФОРМУЛЫ

Расчетную схему для определения местных напряжений в свар­ных соединениях можно представить в виде основного элемента постоянного поперечного сечения, нагруженного кроме внешней нагрузки еще и некоторыми силами, приложенными в местах отде­ления выступающих частей.

На рис. 68 приведены расчетные схемы для некоторых сварных соединений.

Для сварного соединения встык (рис. 68, а) такая схема полу­чается при мысленном отделении валиков шва (его «усилений») и замене их действия действием напряжений, которые приклады­ваются в образованных при этом сечениях. При этом, имея в виду, что для данного случая значение нормальных напряжений в этих сечениях мало, действием их можно пренебречь и учитывать только действие касательных напряжений.

Величину касательных напряжений в зависимости от размеров соединения можно определять по формуле (V.40).

Для сварного соединения внахлестку, осуществленного лобо­выми угловыми швами (рис. 68, б), расчетная схема получается при мысленном отделении угловых швов в сечениях по их подошве и замене действия угловых швов действием напряжений, которые в этих сечениях возникают от внешних сил. Здесь необходимо счи­таться не только с действием касательных напряжений в этих сече­ниях, но и с действием нормальных напряжений, так как для этого случая нормальные напряжения могут иметь существенное значе­ние.

Величину касательных и нормальных напряжений можно опре­делять по формулам (V.50) и (V.59).

Расчетные схемы, представленные на рис. 68, о и б, характери­зуются тем, что задача по определению местных напряжений для них является плоской.

Для более сложных сварных соединений подобная задача может оказаться объемной, например для сварного элемента, представленного на рис. 68, в. Это сильно усложняет условия расчета такого элемента.

В таких случаях приходится ограничиваться более грубыми приближениями и за счет введения некоторых дополнительных до­пущений искусственно сводить задачу к плоской. Подобный путь решения является менее совершенным, однако он может представ-

р

«о!

р р

...

р

а)

2L

h

е

Р 2

h е

Р

--------------

Р

_ Р

«о

ІИІ

6)

-

'о!

— -*■—- ,

Рис. 68. Расчетные схемы сварных соединений:

а — соединение встык; б — соединение лобовыми швами; в — крестовое соединение

лять определенный практический интерес, так как такие реше­ния можно использовать в качестве некоторого первого прибли­жения.

Для элемента, представленного на рис. 68, в, такое приближе­ние можно получить, когда средняя пластина имеет малую тол­щину.

В этих случаях можно полагать, что напряжения по тол­щине такой тонкой пластины изменяются мало и поэтому с этими изменениями можно не считаться. При этом задача становится плоской и ее решение уже значительно облегчается.

Эквивалентные напряжения в этом случае могут быть опреде­лены по формулам, применяемым для расчета продольных швов. Если длина продольных швов, прикрепляющих концевые части, мала, то напряжения в этих швах можно считать как равномерно распределенные по длине швов.

Напряжения по плоскостям раздела сварного соединения, опре­деляемые его формой и способом приложения нагрузки, весьма разнообразны. В общем случае они характеризуются не только своей величиной и направлением, но и условиями распределения по сечению. Для оценки напряженного состояния, созданного раз-

Рис. 69. Изменение местных дополнительных напряжений, возникающих от действия продольной и поперечной силы: а — схемы нагружения; б — напряжения на верх­ней кромке при у = Ь; в —напряжения на нижней кромке при у — — Ь

личными условиями нагружения, целесообразно в качестве основ­ных зависимостей принять известные решения [38, 39], получен­ные для действия сосредоточенных усилий. Последующим интегри­рованием таких исходных решений можно получить зависимости и для всех других различных комбинаций нагрузки, прилагаемой по плоскостям раздела.

Аналитические выражения для местных напряжений в их об­щем виде являются достаточно сложными, однако, имея в виду только частную задачу, связанную с определением максималь­ных напряжений, можно ограничиться их значениями лишь в крайних волокнах рассматриваемых элементов. В этом случае окончательные выражения для напряжений значительно упро­щаются [15].

На рис. 69 приведены графики изменения местных дополни­тельных напряжений в крайних волокнах полосы в районе дей­ствия сосредоточенных сил. Дополнительные напряжения (в дан­ном случае — продольные) определяются следующим соотноше­нием:

До<x = Gx — ocp, (VI. 1)

где А о* — дополнительное напряжение; ах — действительное напряжение;

°ср — номинальное напряжение.

Для расчета сварных соединений в общем случае необходимы данные о местных напряжениях, возникающих от действия как про­дольных сил Т (для учета влияния касательных напряжений), так и поперечных сил Q (для учета влияния нормальных напряже­ний). Соответствующие расчеты формулы для этого могут быть составлены на основе решений [38, 39].

Графики (рис. 69, б, в) построены по формулам (IV.24) и (IV.36). Они характеризуют изменение местных дополнительных про­дольных напряжений в верхнем и нижнем волокнах полосы. Эти дополнительные напряжения возникают от действия продоль­ного и поперечного усилий, приложенных по верхней кромке полосы.

В расчетных схемах сварных соединений необходимо считаться с различными комбинациями расположения выступающих частей. При этом возможны случаи симметричного, а также и несимметрич­ного их расположения. Данные, представленные на рис. 69, отно­сятся к одностороннему расположению нагрузок, т. е. соответ­ствуют случаю расположения выступающих частей только с одной стороны сварного соединения. При расположении выступающих частей с двух сторон подобные данные можно получить соответ­ствующим наложением.

На рис. 69, бив показано изменение коэффициентов аир, характеризующих значения местных дополнительных продольных напряжений, возникающих от единичных значений сил Т и Q, ко­торые действуют на полосу толщиной 2Ь. По величине этих коэффи­циентов можно судить об относительном значении усилий Т и Q, которое они имеют при определении местных дополнительных про­дольных напряжений.

Из приведенных данных видно, что действие продольных уси­лий является более значительным, чем действие поперечных уси­лий.

Отсюда следует, что и влияние касательных напряжений на величину местных дополнительных продольных напряжений должно быть значительно большим, чем влияние на них нормаль­ных напряжений.

Влияние усилий, приложенных на поверхности, проявляется наиболее сильно для точек, расположенные ни этой поверхности. 144

Точки, расположенные на противоположной стороне, находятся в состоянии значительно меньшего нагружения, что в более силь­ной степени проявляется при действии поперечных нагрузок.

Рис. 70. Схемы нагрузки полосы

Из графиков также видно, что местные дополнительные напря­жения наблюдаются только в непосредственной близости от точек приложения нагрузок. При удалении от них значения местных напряжений быстро затухают. Для точек, расположен­ных от места приложения усилий на расстояниях, равных тол­щине полосы 2Ь, значения дополнительных напряжений равны нулю.

Величину местных дополни­тельных напряжений можно опре­делить, исходя из формул (IV.24) и (IV.36). При этом необходимо учитывать различия, которые мо­гут иметь место в условиях прило­жения нагрузок, принятых при выводе этих формул, и в условиях нагружения рассчитываемого со­единения.

На рис. 70, а представлена схема нагрузки полосы, принятая Файлоном при выводе формулы (IV.24).

Для определения местных до­полнительных напряжений, возни­кающих в районе приложения продольного усилия, необходимо произвести соответствующее наложение решений по схемам рис. 70. При этом нужно из местных напряжений, т. е. из напряжений, определяемых формулой (IV.24), вычесть значения номинальных напряжений, определяемых в соответствии со схе­мами рис. 70, б и б.

После указанных наложений и необходимых промежуточных преобразований, которые здесь в целях сокращения текста не приведены, могут быть получены следующие выражения для мест­ных дополнительных напряжений для случая действия продоль­ной силы:

для верхней кромки (при у = Ь)

(VI.2)

Да = -g - (ОДЗб*-1 + 0,465*, — 0,047*3).

для нижней кромки (при у = —Ь)

Да' = y (0,616*, — 0,258*,).

J0 Д. И. Навроцкий

Подобным же образом при действии по верхней кромке попе­речной сосредоточенной силы Q дополнительные местные напряже­ния на верхней кромке выражаются формулой

До = (0,616 — 0,646^ + 0,154*2). (VI.4)

Дополнительными местными напряжениями, возникающими в последнем случае на нижней кромке полосы, ввиду их малости можно пренебречь (рис. 69, б).

В формулах (VI.2)—(VI.4) принято

Т и Q — продольное и поперечное усилия, приходящиеся на единицу ширины полосы.

Приведенные формулы являются приближенными, так как в них представлены только первые члены рядов, выражающих общее решение.

Анализ рядов показал, что они являются быстросходящимися и поэтому небольшое число их членов может обеспечить достаточ­ную точность окончательных вычислений. На основании этого принятые при выводе этих формул упрощения можно считать вполне допустимыми.

Формулы (VI.2)—(VI.4) для определения местных дополни­тельных напряжений, возникающих в полосе от действия сосредо­точенных сил, можно использовать также и при действии распре­деленных нагрузок на поверхности полосы.

Интегрирование формул (VI.2)—(VI.4) для различных условий распределения напряжений на поверхности может производиться следующим образом:

Ы-я+е

До = j* f(x)F (x)'dx, с

где Да — дополнительное местное напряжение при заданном

условии распределения нагрузки на поверхности;

f (*) — функция, определяющая условие распределения на­

грузки на поверхности;

F (*) — функция, определяющая закон изменения дополни­тельных местных напряжений от действия на поверх­ности сосредоточенной силы;

/ — протяженность основной части выступа;

R — радиус перехода от выступа к основному элементу; р — расстояние рассматриваемой точки от участка распре­деления нагрузки.

Формулы (VI. 2)—(VI.4) могут быть использованы для опре­деления дополнительных напряжений при любой форме эпюры на­пряжений на поверхности. Эти эпюры для различных соединений

будут весьма разнообразными, однако в любом случае они (с из­вестным приближением) могут быть представлены в виде комбина­ции отдельных прямолинейных эпюр, для которых можно заранее подготовить требующиеся вспомогательные данные и упростить последующий расчет.

Если закон распределения дополнительных напряжений от

действия сосредоточенной силы известен и задан в форме

До = TF (х),

то для нагрузки, распределенной по линейному закону, примени­тельно к случаям, указанным на рис. 71, для определения дополни­тельных напряжений, возникающих в точке А, можно пользоваться следующими формулами; для схемы по рис. 71, а

Да = уг - (VI.5)

для схемы по рис. 71, б

Да = #т(Нг?-/1_А). (VE6)

Рис. 71. Схемы распределения нагрузки

для схемы по рис. 71, в

До = -^(^-7,-А). (VI.7)

Здесь До — дополнительные напряжения от распределенной на­грузки;

1+R

/і — |Е (х) dx

R

l+R

/2 = j x-F(x)dx.

R

Ниже приводятся формулы для определения дополнительных напряжений в заданной точке поверхности (точка А на рис. 71), полученные соответствующим интегрированием исходных выраже­ний (VI.2)—(VI.4) при различных формах эпюры напряжений на поверхности.

а) Прямоугольная эпюра (рис. 71, а): при действии силы Т

А с = — tcp (о,637 In xi + 0,232x1— 0,012x1---------- ^; (VI.8)

До' = tcp (о,308x1 — 0,064xi--------- ; (VI.9)

при действии силы Q

До = <?ср (о, бібхі — 0,308xi + 0,051x1). (VI. 10)

б) Эпюра по восходящей прямой (рис. 71, б): при действии силы Т

Ас = —tm |о,637(^у-^ Іпхі — l) + (о,232хї — 0,012x1) —

- ~ (о, 155xi - 0,009х!) - ; (VI. 11)

До' = tm [і±-£ (о,308xi — 0,064x1) —

- — (о,205xi — 0,052x1) — ; (VI. 12)

при действии силы Q

Ас = qm (о,616х, — 0,308xi + 0,051x1) —

- - f (о,308x1 — 0,205xi + 0,038x1)1 • (VI.13)

в) Эпюра по нисходящей прямой (рис. 71, в): при действии силы Т

А о = tm [o,637(-j - Іплгі — 1) + (о,232хі — 0,012x1) —

- - J - (о,155хі — 0,009x3 + ; (VI. 14)

До' = — tJ^j - (о,308хі — 0,064x3 —

- - f (о,205хі - 0,052x3 + ; (VI.15)

при действии силы Q

До = — qm [А (о. бібх! — 0,308хі + 0,051x3 —

— — (о,308хі — 0,205хі + 0,038x3]. (VI. 16)

В формулах (VI. 8)—(VI. 16) значение х должно быть взято в пределах интегрирования от х = R до х = R 4 /.

При этом

v __L.

І 6 |« Ь '

_ 2

Xi =

X2

62

R+1 R ~

(R + 1)2- 62

R2

»

_3

XI

Xs

68

R+1

R

(* + /)•-

68

R3

>

;

*1 =

64

R+1

R ~~

(R + ІГ - b*

Ri

>

_5

Xi =

Xs

66

R+1 _ R ~

(Л + 0‘- 66

Rb

На участке перехода от шва к основному металлу происходит некоторое постепенное изменение формы, которое можно характе­ризовать радиусом закругления. На этом участке происходит также постепенное изменение нагрузки от максимума до нуля. Примем в первом приближении, что касательные напряжения здесь изменяются по закону кубичной параболы (рис 71, г)

уЗ

і = t

lx lm ftз >

что основано на некоторых предварительных опытах.

Дополнительные напряжения в точке А от касательных нагру­зок на этом участке найдутся на основе принятой зависимости при интегрировании в пределах от х = 0 до х = R и определятся сле­дующими формулами: на верхней кромке

Аа = —^(0,212-0,25-^ + 0,093—-); (VI. 17)

на нижней кромке

Да' = tm (-0,215-1- ;- 0,123-^); (VI. 18)

от нагрузки на обеих кромках

Да" = —tm (0,212 — 0,125— + 0,03 . (VI. 19)

Применение изложенной методики расчета может быть проил­люстрировано на примерах определения коэффициентов концен­трации напряжений для некоторых типовых сварных соединений, приведенных ниже.

20. РАСЧЕТ СТЫКОВЫХ СОЕДИНЕНИЙ

Примем для расчета соединение встык листов толщиной 6 = = 40 мм с параметрами по ГОСТу 8713—58 для шва с индексом

Для определения коэффициента концентрации напряжений в сварном стыковом соединении можно принять расчетную схему по рис. 68, а.

Рис. 72. Схема расчета соединения встык: а — стыковое соединение; б — условная схема соединения; в — эпюра касательных напряжений в сечении по подошве выступа; г — эквивалентная нагрузка

Аф — Cl 5, что соответствует двустороннему шву, выполненному автоматическим способом на флюсовой подушке (рис. 72).

При вычислении коэффициента концентрации напряжений, как было принято выше, влиянием нормальных напряжений в сече­ниях, отделяющих выступающие части шва, ввиду их малости пренебрегаем.

Распределение касательных напряжений в сечениях раздела примем по формуле для прямоугольных выступов

а и

Ху = —т— sh ах. х А0

Наибольшее значение касательных напряжений будет в точке с координатой х = I

хт = -?-sh al.

710

Здесь в соответствии с формулой (V.40) принято. ch al — 1 б + 2с 0 ас б ’

‘"“•9(бТгГ

где б — толщина соединяемых листов; с — высота выступа стыкового шва.

Значение высоты выступов примем в соответствии с установлен­ными допусками в пределах 1—6 мм.

В табл. 22 приведены расчетные значения касательных напря­жений в сечении по подошве выступа стыкового шва.

Таблица 22

К расчету напряжений в сечении по подошве выступов стыкового шва (6=40 мм)

С в мм

k

al

ас

ch al

sh al

A

о

1

0,855

8,32

0,416

2012,0

2012

5070,0

0,397

3

0,778

4,62

0,695

50,8

50,7

82,2

0,617

6

0,683

3,12

0,935

11,4

11,3

15,7

0,720

Эпюра касательных напряжений в сечении по подошве высту­пов стыкового шва показана на рис. 72, в.

Для упрощения последующего расчета заменим криволиней­ную эпюру касательных напряжений прямолинейной. Тогда для расчета местных напряжений в сварном соединении можно приме­нить формулу (VI. 11).

При этом расчетное значение длины участка распределения нагрузки определится из условия равенства площадей криволиней­ной и прямолинейной эпюр напряжений. На рис. 72, в эти эпюры отмечены цифрами 1 и 2.

Следовательно, можно написать

і

*т1 Г, сЪа

2 - J dx - д + 2с,

о

откуда

, а 2с6

При учете касательных напряжений, действующих также и на участке перехода (протяженностью R), расчетное значение на­грузки tm будет несколько сниженным (tm < tm).

Эпюра напряжений для этого случая отмечена на рис. 72, в цифрой 3.

Из условия равенства площадей эпюр напряжений 2 и 3 имеем

R

^Unli tm Г з tmR

2 ~ R3 J QX ~~ 4 ’

0

откуда

At = t.

L-^9,m Lm ^ •

Имея в виду, что

t' =t + At,

m m 1 m1

после подстановки получим

t = t’ ——____

m 2 k+R

Значение местных напряжений в сварном соединении зависит от формы сопряжения поверхности шва и основного металла и мо­жет определяться радиусом перехода этого сопряжения. Для оценки влияния радиуса перехода примем при расчете несколько его значений, характерных для обычных производственных усло­вий, R = 0,5; 1; 3 мм.

Таблица 23

К расчету местных напряжений в сварном стыковом соединении

Основные характеристики

h+R

h+R

і,

R

Ь

11

в мм

ь

і,

и

2 b

R

в мм

0,05

0,025

0,05

0,15

0,05

1,21

1,06

1,12

1,35

1,08

0,12

0,21

0,21

0,21

0,32

0,29

0,45

0,48

0,58

0,69

4,80

8.45

8.45

8.45 12,80

1,66

2,89

2,25

1,34

2,63

4,16

2.36

2.36

2.36 1,56

I

0,5

1

3

1

Вспомогательные данные

Пределы интегрирования

Значения

степеней X,

h+R

R

_ 2

_3

4

5

ь

ъ

*1

*1

*1

*1

0,29

0,05

0,081

0,024

0,007

0,002

0,45

0,025

0,202

0,091

0,041

0,018

0,48

0,05

0,223

0,107

0.051

0,024

0,58

0,15

0,308

0.187

0,109

0,063

0,69

0,05

0,437

0,328

0,227

0,156

3 н

а ч е н и я

м е с т н

ых напряжений

с

R

до

до'

до"

в мм

в мм

а

о

о

о

1

1

0,190

0,018

0,074

0,282

1,282

3

0,5

0,670

0,053

0,125

0,848

1,848

3

1

0,454

0,049

0,120

0,623

1,623

3

3

0,176

0,039

0,098

0,313

1,313

6

1

0,610

0,075

0,141

0,826

1,826

Все расчетные характеристики, необходимые для вычисления местных напряжений, и окончательные результаты расчета при­ведены в табл. 23.

При определении местных напряжений в точке А учитывалось влияние только тех участков эпюр касательных напряжений, кото­рые расположены в непосредственной близости от нее (на рис. 72, г эти участки обозначены цифрами / и 2). Влияние удаленных уча­стков эпюр (на рис. 72, г они обозначены цифрами 3 и 4) в расчете не учитывалось, так как в данном случае при сравнительно боль­шом удалении этих участков оно мало.

б)

а)

к

R 10 Змм ' О

6 мм

\

^Эф

.

р=0,5мм с=3мм

О

/

ЛЭф

/

/

/

р=0,5мм R = !mm

І. Є

ЇМ

1.2

Рис. 73. Изменение коэффициентов концентрации напряжений в зависимости от радиуса перехода (а) и высоты выступа стыкового шва (б)

Порядок вычисления местных напряжений может быть пред­ставлен примером определения напряжений в точке А, возника­ющих в ней от действия выступающей части шва, расположенной на противоположной кромке.

Примем для этого случая следующие значения размеров шва Я = 1 мм; с — 3 мм.

В табл. 22 все характеристики и вспомогательные данные пред­ставлены в строчке 3.

По формуле (VI. 12) имеем

А о = тт (б,308^1 — 0,064jci) —

- (о,205хї - 0,052xi) - А].

Подставляя в эту формулу значение тт

2сб 2 k 4 с«

т ° Mfl + 2с) '(2h + R) ° (6 + 2с) (2Й + R) ’

а также соответствующие значения из табл. 22, получим

= (40 и - 6) (2'&45 + I) 11.12(0.308-0,223 - 0,064-0,051)- — 2,36 (0,205 • 0,107 — 0,052 • 0,024) — 0,11 ] = 0,049.

Результаты расчетов представлены на рис. 73, из которого видно, что снижения коэффициентов концентрации напряжений в сварном стыковом соединении можно достичь увеличением ра­диуса перехода и уменьшением высоты выступа шва.

Подобный же расчет можно использовать и для определения значений эффективного коэффициента концентрации напряжений. При этом можно основываться на положениях, принятых в теории макронапряжений [9].

Согласно этой теории, при расчете на прочность необходимо определят!, напряженное состояние не для отдельных математиче­ских точек участков конструкций, как это принято в теории упру­гости, а для макрообъемов материала, для которых это напряжен­ное состояние характеризуется некоторыми осредненными значе­ниями напряжений.

Линейный размер макрообъемов материала (равный радиусу сферы р) принят в качестве структурной характеристики данного материала, которая определяется только его исходными природ­ными свойствами и не зависит от различий напряженного состоя­ния, создаваемого внешними силами.

Не ставя целью полное и строгое применение указанной мето­дики, которая в общем случае является еще достаточно сложной, можно ограничиться задачей составления более простых прибли­женных решений, применение которых допустимо в отдельных частных случаях.

В качестве одного из таких приближений для упрощения рас­четов целесообразно принять, что наибольшие значения осреднен - ных напряжений в макрообъемах материала, расположенных у концентраторов, соответствуют значениям напряжений, определяе­мым по методам теории упругости для точек, находящихся от этих концентраторов на расстоянии р. Если при этом структурная ха­рактеристика материала р будет уже известной, то формулы для определения наибольших местных макронапряжений могут быть составлены на основе уже готовых решений.

Для определения осредненных значений местных дополнитель­ных напряжений в наиболее опасных участках стыкового соедине­ния можно применить формулы (VI. 11), (VI.12), (VI.17) и (VI.18) при соответствующем учете значения структурной характеристики материала р. В этом случае эти формулы будут иметь следующий вид:

А о - fm[* + (о, 64 — X! + 0,23x1 — 0,01 х?) —

- - j - (о,64xi— 0,5хі + 0,16хі-0,01x1)]; (VI. 1 la)

А а' = tm |i±_*±£ (0)5х, _ 0,31xi + 0,06x1) —

- (o,25xi — 0,21 xj + 0,05xi)j. <VL 12a)

В этих формулах значение хх должно быть определено в преде­лах интегрирования от х = R + р до х = I + R + р.

Да = tm [0,21 — 0,32q2 (1 — 2р2) — 0,64б2 -

- 0,257?, (1 — 0,47qi) + 0,09/?? ] ; (VI. 17a)

A o' == /m(0.13/?, — 0,12/?? + 0,16q,/?,). (VI. 18a)

Здесь

n __ JR_. „ _ _c^. n __ 6

Al j, > 5l fc > 42 я ■

Если в формулах (VI. I la), (VI. 12a), (VI. 17a), (VI. 18a) для опре­деления осредненных значений местных дополнительных напряже­ний принять р = 0, то получатся формулы (VI. 11), (VI. 12),

Таблица 24

К расчету осредненных значений местных дополнительных напряжений

и значений Кэф

с

I! ММ

R

в мм

6 в ММ

а

да

о

до'

о

да"

а

Кэф

К'эф

1

1

4,8

0,359

0,166

0,018

0,025

1,21

1,20

3

0,5

8,5

0,600

0,475

0,053

0,032

1,56

1,54

3

1

8,5

0,584

0,326

0,046

0,040

1,41

1,40

3

3

8,5

0,525

0,151

0,037

0,042

1,23

1,22

6

1

12,8

0,685

0,470

0,074

0,047

1,59

1,57

(VI. 17), (VI. 18) для определения обычных местных дополнительных напряжений (не осредненных в макрообъемах), по которым вычис­ляются значения теоретического коэффициента концентрации напряжений Ка.

Значение структурной характеристики металла околошовной зоны сварного стыкового соединения из малоуглеродистой стали марки Ст. 3 по данным [33] примем р = 0,5 мм.

Результаты расчета значений Кэф приведены в табл. 24 и пред­ставлены графиками на рис. 73.

В табл. 24 указаны также приближенные значения коэффициен­тов концентрации напряжений Кэф, вычисленные без учета до­полнительных напряжений, действующих на участке перехода До", определяемых по формулам (VI. 17а) и (VI. 18а) и при условии,

ЧТО t//і t/ц.

Сопоставление этих значений КЭф и КЭф свидетельствует об их близком совпадении и показывает, что принятое при этом упроще­ние является вполне приемлемым.

Сопоставление полученных значений коэффициентов концентра­ции напряжений показывает, что значения Кэф, как и следовало ожидать, являются несколько меньшими, чем значения Ка. Это различие между ними определяется значением р.

Принятый здесь метод учета «осреднения» местных напряжений может быть использован при расчетном определении значений эффективных коэффициентов концентрации напряжений. Предло­женные формулы позволяют учитывать влияние формы и размеров сварных соединений. Изменение свойств металла околошовной зоны может быть учтено выбором соответствующей структурной характеристики материала. Другие факторы, оказывающие влия­ние на прочность сварных соединений (например, остаточные на­пряжения), могут также быть учтены соответствующим расчетом. Таким образом, предложенные здесь формулы при дополнительном учете других факторов могут найти свое практическое применение.

Экспериментальная проверка показала, что при значениях вы­соты выступа шва с к ширине выступа шва 21 : < 0,35 точность

предлагаемых здесь формул для расчета коэффициента концентра­ции напряжений в сварных стыковых соединениях является вполне достаточной [35].

РАСЧЕТ СВАРНЫХ СОЕДИНЕНИЙ С УЧЕТОМ КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ

КОНЦЕНТРАЦИЯ НАПРЯЖЕНИЙ В УЗЛЕ С РЕЗКИМ ОБРЫВОМ СВЯЗЕЙ

Примером узла с резким изменением формы может слу­жить крестовое соединение, в котором осуществляется сопря­жение элементов, расположенных в разных плоскостях (рис. 76). Применение”таких соединений имеет место, например, в узле фермы, когда …

РАСЧЕТ СОЕДИНЕНИЙ С ЛОБОВЫМИ ШВАМИ

Местные напряжения для соединения с лобовыми угловыми швами определяются по расчетной схеме рис. 68, б. Схема модели соединения и действующие в швах напряжения показана на рис. 74. В сечении по …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.