ПРОМЫШЛЕННАЯ ТЕПЛОПЕРЕДАЧА ТЕОРИЯ И ЕЕ ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ. ОСНОВНЫЕ ЧИСЛОВЫЕ ПРИМЕРЫ

ТРИ СПОСОБА ПЕРЕДАЧИ ТЕПЛА И КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ

Передача тепла может осуществляться тремя способами:

1) теплопроводностью;

2) конвекцией;

3) излучением.

Все эти способы теплопередачи обусловлены, разностью темпе; ратур; тепло всегда переходит от более нагретого тела к менее нагретому. Передача тепла путем теплопроводности происходит в одном и том же теле там, где в нем существует перепад темпе­ратур или где соприкасаются два различных тела'с различной температурой. Как известно, передача тепла обусловливается движением молекул и атомов тела; поэтому распространение теп­ла теплопроводностью необходимо представить себе как следст­вие того, что более нагретые и поэтому колеблющиеся быстрее молекулы отдают часть своей энергии колебания соседним мо,- лекулам, колеблющимся медленнее. Таким образом происходит распространение тепла путем теплопроводности. Кроме того, в переносе тепла участвуют Электроны. Передача тепла путем теп­лопроводности зависит от величины температурного перепада, геометрических размеров и физических свойств тела. Эта зависи­мость может быть записана в удобной математической форме. Говоря о теплопроводности, следует различать установившуюся (стационарную) и неустановившуюся (нестационарную) прово­димости тепла. Установившийся тепловой поток проходит через тело, температура которого в каждой точке не изменяется со вре: менем, т. е. через такое тело, температурное поле которого не зависит от времени. В этом случае через определенное сечение тела за один час проходит всегда неизменное -количество тепла. Если же у рассматриваемого тела температура изменяется повсе; местно или в отдельных его частях, то это вызывает соответству­ющее изменение теплового потока: он становится нестационар^- ным, т. е. зависимым от времени. При этом изменении темпера; тур изменяется и теплосодержание тела. Количество тепла, кото­рое соответствует этому изменению теплосодержания, соответст­вует и отклонению от равномерного теплового потока - Далее мы увидим, что это изменение теплосодержания тела со временем вследствие соответствующего изменения температурного поля с^ь щественно усложняет математическое описание теплопроводно - 2* сти. К счастью, изменяющееся во времени температурное поле на практике встречается лишь в регенераторах и во всех процессах нагревания. Для преобладающей же части технических процес­сов передачи тепла теплопроводностью характерны установивши­еся тепловые потоки,, которые наблюдаются при достижении ста­ционарного состояния. В этом случае математическое описание явления очень просто. Часто неустановившийся тепловой поток можно определить приближенно, прибегая к раздельному расче­ту процесса аккумуляции и установившегося теплового потока.

Передача тепла конвекцией мокет происходить лишь в газах и жидкостях. Она осуществляется следующим образом: к по­верхности нагрева поступают все новые и новые частички газа или жидкости, которые отдают ей свое тепло. Следовательно, теп­ло к поверхности нагрева переносится механическим путем (кон­вейерное перемещение). Естественно, что теплопередача конвек­цией происходит тем интенсивнее, чем больше скорость движе­ния частичек жидкости или газа. Если это движение поддержи­вается искусственно, например мешалкой или путем создания перепада давления в трубопроводах, то это соответствует искус­ственной, или вынужденной, конвекции. Напротив, движение, обу­словленное исключительно внутренними причинами, т. е. глав­ным образом тепловым расширением и связанным с ним появ­лением подъемной силы, называют свободной конвекцией.

Передача тепла излучением происходит в том случае, когда две поверхности, характеризуемые различной температурой, рас­полагаются в пространстве одна против другой и между ними на­ходится прозрачная для излучения среда. Для лучистого потока прозрачными являются «пустое» пространство и сухой воздух. Непрозрачными являются большинство жидкостей и горючих га­зов, а также различные газы в некоторых интервалах длин волн, как напримёр, СОг и водяной пар. Излучение этих газов имеет огромное значение в технике. Оно будет рассмотрено более об­стоятельно в дальнейшем.

Коэффициент теплоотдачи относится к важнейшим понятиям в области теплопередачи. Он равен такому количеству тепла, ко­торое передается теплоносителем одному квадратному метру по­верхности за один час при разности температур в 1°. Размерность коэффициента теплоотдачи: ккал/м2*час° С. Количество тепла, переданное поверхности Р м2 за т часов при разности температур между поверхностью нагрева и теплоносителем (^1—^)°С,

<2 == а(/х — 12)Р • т ккал. | 0)

Раньше считали, что коэффициент теплоотдачи, подобно коэф­фициенту теплопроводности, является чисто физическим свойст­

Вом тела и поэтому его называли «внешним коэффициентом теп­лопроводности». В настоящее время установлено, что коэффици­ент теплоотдачи зависит как от физических свойств (удельной теплоемкости, коэффициента теплопроводности, вязкости), так и от состояния потока теплоносителя. Таким образом, поскольку коэффициеит теплоотдачи зависит от состояния потока (вихре - образование, краевые влияния и т. д.), приходится считаться с фактом некоторой неустойчивости определяющих его условий. Вследствие этого, как будет показано ниже, для определения ко­эффициента теплоотдачи невозможно дать совершенно точных формул. Тем не менее благодаря сочетанию многочисленных ис­следований с теоретическими изысканиями (особенно с теорией подобия) эта область изучена настолько глубоко, что в определе­нии коэффициента теплоотдачи в общем случае достигнута до­статочная для практических целей точность, которая уступает лишь точности формул, применимых для частных случаев, играю­щих в технике наиболее важную роль (например, для одиночной трубы, насадки регенератора, газа, воды).

ПРОМЫШЛЕННАЯ ТЕПЛОПЕРЕДАЧА ТЕОРИЯ И ЕЕ ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ. ОСНОВНЫЕ ЧИСЛОВЫЕ ПРИМЕРЫ

РАСЧЕТ РЕГЕНЕРАТОРОВ

Предположим, что с помощью регенератора необходимо подо­греть воздух в количестве Vв = 13000 нм3/час, температура кото­рого на входе составляет $в1 = 100° С, до температуры на выхо­де 8^2 = 1000°. …

Прямоточные и противоточные рекуператоры

Дан рекуператор, диаметр воздушных каналов которого йв = = 0,08 ж, а газовых — с1г =0,1 м. Каналы разделены шамотной стенкой толщиной 3 см. Через рекуператор за час проходит отхо­дящий …

РАСЧЕТ ТЕПЛООБМЕННИКОВ ВОДОПОДОГРЕВАТЕЛЬ

Точный метод. Водоподогреватель состоит из вертикальных стальных труб диам. в свету 30 мм и толщиной стенки 3 мм. Дли­на труб 2 м: снаружи их обогревают насыщенным паром 10,2 ата, что …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.