Влияние степени сжатия на физические константы, определяющие деформационную работоспособность Пенополиуретана
Основной характеристикой длительного сопротивления сжимающим нагрузкам пенопластов, как уже говорилось выше, является величина критической (необратимой) деформации. Согласно кинетической концепции деформирования [4, 5] время достижения этого события (деформационная долговечность в) описывается уравнением (2.9).
При длительном сжатии пенопластов происходит постепенное нарастание деформации и на кривых ползучести не заметен переход от упругого деформирования к пластическому (рисунок 1.6). Для установления этой области в работе проведено исследование поведения пенополиуретана при сжатии до разных уровней деформирования в диапазоне от 5 до 20 %.
Испытания на долговечность проводили по методике, описанной в пункте 2.2.2 в режиме заданного постоянного напряжения на установке, показанной на рисунке 2.6; размеры и форма образцов показаны на рисунке 2.1. Способы получения и обработки экспериментальных данных приведены в пункте 2.4.1.
Полученные зависимости в координатах Lg& - сг и Lg& - 10 /Т для каждого заданного уровня деформации (5, 10, 15 и 20 %) представлены на рисунке 3.5 -3.9. Из рисунков видно, что они имеют линейный характер и описываются уравнением (2.10).
Величины эмпирических коэффициентов входящих в уравнение (2.9) определяли по методике, описанной в пункте 2.4.1. Значения представлены в таблице 3.3.
Таблица 33 - Значения коэффициентов для различных марок ППУ при различных величинах деформации сжатия
|
Как видно из таблицы 3.3 коэффициенты 9т при 5 %-ой деформации, для всех исследуемых марок ППУ, на пол порядка меньше, чем при больших величинах деформаций (10 %, 15 %, 20 %). Для мелкопористых трехкомпонентных ППУ (Изолан 210-1, Изолан 360, Изолан 200-а, Изолан 105) коэффициент 0т после 5 %-ого уровня деформирования не изменяется с ростом деформации. Это связано с механизмом деформирования мелкопористых пеноматериалов. При деформировании подобных пенопластов наблюдается смятие поперечного слоя сразу на несколько ячеек. В дальнейшем этот слой расширяется за счет смятия прилегающего слоя. Как было сказано выше 5 %-ый уровень деформации ППУ является упругой (обратимой), а повышение 9т при больших уровнях деформаций показывает, что в материале произошли необратимые процессы и изменился механизм деформирования.
Ту
У крупнопористого, двухкомпонентного Владипур ППУ-СП величина 9т растет с увеличением степени сжатия, что указывает на совершенно иной механизм деформирования, чем у мелкопористых пенопластов. Это подтверждается в работах И. Г. Романенкова и А. Г. Дементьева [7], согласно которым у крупнопористых пеноматериалов вначале происходит деформирование тяжей приблизительно на высоту одной ячейки. В дальнейшем происходит последовательное деформирование тяжей каждого соседнего прилегающего слоя, что приводит к определенной ориентации структуры и, соответственно, к постепенному увеличению коэффициента 9т.
Величина эмпирического коэффициента Т*т для всех видов исследуемых ППУ примерно одинакова, и не зависит от величины деформирования. Поведение коэффициента Т*т подобно поведению коэффициента Тт при разрушении пенополиуретана поперечным изгибом, и связано, с тем, что все материалы получены по технологии свободного вспенивания углекислым газом, схожими пенообразователями.
Поведение коэффициентов Uo* и у* также зависит от вида пенополиуретана. Так у мелкопористых пенопластов (Изолан 210-1, Изолан 360, Изолан 200-а, Изолан 105) увеличение этих коэффициентов происходит по мере роста величины деформирования, и лишь при достижении 20 % - ой деформации коэффициенты Uo* и у* уменьшаются (показано на примере Изолан 210-1 и Изолан 200-а). У крупнопористого Владипур™ ППУ-СП коэффициенты Uo* и у* уменьшаются с увеличением уровня деформирования. Закономерности изменения этих коэффициентов от уровня деформации для мелкопористых и крупнопористых видов ППУ, также связаны с различием механизма их деформирования. Следует также отметить рост коэффициента Uo* с повышением плотности материала. Например, для Изолан 210-1 при 5 % деформации U0* =-43 кДж/моль, что в 5,8 и в 1,4 раза больше чем для ППУ Изолан 105 и Изолан 200-а соответственно. Это, по- видимому, связано с рецептурой этих трехкомпонентных пенополиуретанов [6,7].
Анализируя полученные результаты можно сделать некоторые выводы о механизмах деформирования исследуемых ППУ. Так для мелкопористых ППУ поведение коэффициентов вт, Uo* и у* соответствует диаграмме «напряжение-деформация». В общем случае, как отмечалось [2, 6, 7], у легких ППУ на диаграмме сжатия, как правило, наблюдается 3 четко выраженных участка: крутой начальный участок; снижение напряжения, плато, либо небольшой рост напряжения на втором участке; третий участок сильного возрастания напряжения. Начальный участок отражает сжатие и изгиб тяжей и стенок ячеек пенопласта до достижения ими потерь устойчивости; на втором участке тяжи теряют устойчивость и разрушаются или изгибаются за счет вынужденноэластической деформации, что приводит к резкому снижению напряжения в первом случае и возникновению плато или некоторому росту напряжения во втором. На третьем участке происходит окончательное смятие разрушенных ячеек и постепенный переход к сжатию полимера. Как отмечалось в [7] переход к третьему
Участку обычно происходит после достижения 20 % деформации, что подтверждается нашими экспериментами.
Поведение коэффициентов вт , Uo* и у для крупнопористого
>rw
Владипур ППУ-СП так же соответствует диаграмме «напряжение - деформация», с той лишь разницей, что не наблюдается переход к третьему участку. Это связано с тем, что для данных видов ППУ достижение 20 %-ой деформации видимо мало для этого перехода.
По методике представленной в пункте 2.4.4 был рассчитан геометрический коэффициент (таблица 3.4), характеризующий особенности механического поведения ячеистой структуры при центральном сжатии. Коэффициенты Ксж и у* сведенные в таблицу 3.4 также подтверждают различие механизма деформирования мелкопористых и крупнопористых пеноматериалов.
Таблица 3.4 - Значения геометрического коэффициента Ксж и эмпирического коэффициента у при деформировании центральным сжатием
|
По коэффициентам, приведенным в таблице 3.3, с помощью уравнения (2.9)-(2.11) можно прогнозировать предел вынужденной эластичности, теплостойкость и деформационную долговечность пенополиуретана при различных заданных величинах деформации.