Предупреждение АВАРИЙ ПАРОВЫХ КОТЛОВ
КОРРОЗИЯ МЕТАЛЛА ПОВЕРХНОСТЕЙ НАГРЕВА КОТЛОІ И МЕРУ ПО ЕЕ ПРЕДУПРЕЖДЕНИЮ
Условия, в которых находятся элементы паровых котлов во время эксплуатации, чрезвычайно разнообразны.
Как показали многочисленные коррозионные испытания и промышленные наблюдения, низколегированные и даже аустенитные стали при эксплуатации котлов могут подвергаться интенсивной коррозии.
Коррозия металла поверхностей нагрева паровых котлов вызывает его преждевременный износ, а иногда приводит к серьезным неполадкам и авариям.
Большинство аварийных остановов котлов приходится на сквозные коррозионные поражения экранных, экономай - зерных, пароперегревательных труб и барабанов котлов. Появление даже одного коррозионного свища у прямоточного котла приводит к останову всего блока, что связано с недовыработкой электроэнергии. Коррозия барабанных котлов высокого и сверхвысокого давления стала основной причиной отказов в работе ТЭЦ. 90 % отказов в работе из-за коррозионных повреждений произошло на барабанных котлах давлением 15,5 МПа. Значительное количество коррозионных повреждений экранных труб солевых отсеков было в'зонах максимальных тепловых нагрузок.
Проведенными специалистами США обследованиями 238 котлов (блоки мощностью от 50 до 600 МВт) было зафиксировано 1719 внеплановых простоев. Около 2/3 простоев котлов были вызваны коррозией, из них 20 % приходилось на коррозию парогенерирующих труб. В США внутренняя коррозия'в 1955 г. была признана серьезной проблемой после ввода в эксплуатацию большого числа барабанных котлов давлением 12,5—17 МПа.
К концу 1970 г. около 20 % из 610 таких котлов были поражены коррозией. В основном внутренней коррозии были подвержены экранные трубы, а пароперегреватели и экономайзеры поражались ею меньше. С улучшением качества питательной воды и переходом на режим координированного фосфатироваиия, с ростом параметров на барабанных котлах электростанций США вместо вязких, пластических коррозионных повреждений происходили внезапные хрупкие разрушения экранных труб. 'По состоянию на J970 т. для котлрв давлением 12,5; 14,8 и 17 МПа разрушение труб из-за коррозионных повреждений составило соответственно 30, 33 и 65 % [23].
По условиям протекания коррозионного процесса различают атмосферную коррозию, протекающую под действием атмосферных, а также влажных газов; газовую, обусловленную взаимодействием металла с различными газами — кислородом, хлором и т. д. — при высоких температурах, и коррозию в электролитах, в большинстве случаев протекающую в водных растворах.
По характеру коррозионных процессов котельный металл может подвергаться химической и электрохимической коррозии, а также их совместному воздействию.
При эксплуатации поверхностей нагрева паровых котлов встречается высокотемпературная газовая коррозия в окислительной и восстановительной атмосферах топочных газов и низкотемпературная электрохимическая коррозия хвостовых поверхностей нагрева.
Исследованиями установлено, что высокотемпературная коррозия поверхностей нагрева наиболее интенсивно протекает лишь при наличии в топочных газах избыточного свободного кислорода и в присутствии расплавленных оксидов ванадия.
Высокотемпературная газовая или сульфидная коррозия в окислительной атмосфере топочных газов поражает трубы ширмовых и конвективных перегревателей, первые ряды кипятильных пучков, металл дистанционирующих проставок между трубами, стойки и подвески.
Высокотемпературная газовая коррозия в восстановит тельной атмосфере наблюдалась на экранных трубах топочных камер ряда котлов высокого и сверхкритического давления.
Коррозия труб поверхностей нагрева с газовой стороны представляет сложный физико-химический процесс взаимодействия топочных газов и наружных отложений с окисны - ми пленками и металлом труб. На развитие этого процесса оказывают влияние изменяющиеся во времени интенсивные тепловые потоки и высокие механические напряжения, возникающие от внутреннего давления и самокомпенсации.
На котлах среднего и низкого давления ' температура стенки экранов, определяемая температурой кипения воды, ниже, и поэтому этот вид разрушения металла не наблюдается.
Коррозия поверхностей нагрева со стороны дымовых газов (внешняя коррозия) есть процесс разрушения металла в результате взаимодействия с продуктами сгорания, агрессивными газами, растворами и расплавами минеральных соединений.
Под коррозией металла понимают постепенное разрушение металла, происходящее вследствие химического или электрохимического воздействия внешней среды.
\ Процессы разрушения металла, являющиеся следствием их непосредственного химического взаимодействия с окружающей средой, относятся к химической коррозии.
Химическая коррозия происходит при контакте металла с перегретым паром и сухими газами. Химическую коррозию в сухих газах называют газовой коррозией.
В топке и газоходах котла газовая коррозия наружной поверхности труб и стоек пароперегревателей происходит под воздействием кислорода, углекислого газа, водяных паров, сернистого и других газов; внутренней поверхности труб — в результате взаимодействия с паром или водой.
Электрохимическая коррозия в отличие от химической характеризуется тем, что протекающие при ней реакции сопровождаются возникновением электрического тока.
Переносчиком электричества в растворах служат ионы, присутствующие в них из-за диссоциации молекул, а в металлах — свободные электроны:
Внутрикотловая поверхность подвержена в основном электрохимической коррозии. По современным представлениям ее проявление обусловлено двумя самостоятельными процессами: анодным, при котором ионы металла переходят в раствор в виде гидратироваиных ионов, и катодным, при котором происходит ассимиляция избыточных электронов деполяризаторами. Деполяризаторами могут быть атомы, ионы, молекулы, которые при этом восстанавливаются.
По внешним признакам различают сплошную (общую) и местную (локальную) формы коррозионных разрушений.
При общей коррозии вся соприкасающаяся поверхность нагрева с агрессивной средой подвергается разъеданию, равномерно утоняясь с внутренней или наружной стороны. При локальной коррозии разрушение происходит на отдельных участках поверхности, остальная поверхность металла не затрагивается повреждениями.
К местной локальной относят коррозию пятнами, язвенную, точечную, межкристаллитную, коррозионное растрескивание, коррозионную усталость металла.
Типичный пример разрушения от электрохимической коррозии.
Разрушение с наружной поверхности труб НРЧ 042X5 мм из стали 12Х1МФ котлов ТПП-110 произошло на горизонтальном участке в нижней части подъемно-опускной петли в зоне, примыкающей к подовому экрану. На тыльной стороне трубы произошло раскрытие с малым утонением кромок в месте разрушения. Причиной разрушения явилось утонение стенки трубы примерно на 2 мм при коррозии из-за расшлаковки струей воды. После останова котла паропроизводитель - ностью 950 т/ч, отапливаемого пылью антрацитного штыба (жидкое шлакоудаление), давлением 25,5 МПа и температурой перегретого пара 540 °С на трубах оставались мокрый шлак и зола, в которых интенсивно протекала электрохимическая коррозия. Снаружи труба была покрыта толстым слоем бурой гидроокиси железа Внутренний диаметр труб находился в пределах допусков на трубы котлов высокого и сверхвысокого давления. Размеры по наружному диаметру имеют отклонения, выходящие за пределы минусового допуска: минимальный наружный диаметр. составил 39 мм при минимально допустимом 41,7 мм. Толщина стенки вблизи места разрушения от коррозии составляла всего 3,1 мм при номинальной толщине трубы 5 мм.
Микроструктура металла однородна по длине и окружности. На внутренней поверхности трубы имеется обезуглераженный слой, образовавшийся при окислении трубы в процессе термической обработки. На наружной стороне такой слой отсутствует.
Обследования труб НРЧ после первого разрыва позволило выяснить причину разрушения. Было принято решение о замене НРЧ и об изменении технологии расшлаковки. В данном случае электрохимическая коррозия протекала из-за наличия тонкой пленки электролита.
Язвенная коррозия протекает интенсивно на отдельных небольших участках поверхности, но часто на значительную глубину. При диаметре язвин порядка 0,2—1 мм ее называют точечной.
В местах, где образуются язвины, со временем могут образоваться свищи. Язвины часто заполняются продуктами коррозии, вследствие чего не всегда их удается обнаружить. Примером может служить разрушение труб стального экономайзера при плохой деаэрации питательной воды и низких скоростях движения воды в трубах.
Несмотря на то что поражена значительная часть металла труб, из-за сквозных свищей приходится полностью заменять змеевики экономайзера.
Металл паровых котлов подвергается следующим опасным видам коррозии: кислородной коррозии во время работы котлов и нахождения их в ремонте; межкристаллит - ной коррозии в местах упаривания котловой воды; пароводяной коррозии; коррозионному растрескиванию элементов котлов, изготовленных из аустенитных сталей; подшламо - вой коррозии. Краткая характеристика указанных видов коррозии металла котлов приведена в табл. ЮЛ.
В процессе работы котлов различают коррозию металла — коррозию под нагрузкой и стояночную коррозию.
Коррозии под нагрузкой наиболее подвержены обогре-. ваемые котельные элементы, контактирующие с двухфазной средой, т. е. экранные и кипятильные трубы. Внутренняя поверхность экономайзеров и перегревателей при работе котлов поражается коррозией меньше. Коррозия под нагрузкой протекает и в обескислороженной среде.
Стояночная коррозия проявляется в недренируемых. элементах вертикальных змеевиков перегревателей, провисших трубах горизонтальных змеевиков перегревателей
Таблица ЮЛ. Характеристика основных видов коррозии металла котлов
|
Продолжение табл. 10.1
|
!и экономайзеров, неопорожняемых гнутых участках необогреваемых труб и т. п.
Стояночная коррозия протекает в условиях одновремен - s ного наличия влаги и кислорода.