ХИМИЧЕСКИЕ СВОЙСТВА
Химические свойства ПЭВД определяются характером его молекулярного и надмолекулярного строения. Макромолекулы ПЭВД представляют собой длинные цепочки групп - СН2-. Полимер частично закристаллизован. Доля аморфной части составляет 60—80%. Число СН3-групп и соответственно третичных атомов углерода лежит в интервале 1,5—2,5 На 100 С, число связей —С=С— главным образом винилиденовых, составляет примерно 0,3—0,5 на 1000 С. В очень небольшом количестве (10"3 + •Н0"4%) в макромолекулах имеются кислородсодержащие группы: ~С=0, - О-Н, - О-О-Н, - С-О-С. Эти детали строения макромолекул
•і
ПЭВД являются причиной определенного отличия его химических свойств от свойств алкановых углеводородов.
При комнатной температуре в отсутствие света ПЭВД обнаруживает достаточно высокую стойкость к действию кислорода воздуха. ПЭВД весьма стоек к таким сильным реагентам, как щелочи и кислоты. Он, например, проявляет высокую стойкость к концентрированным плавиковой и соляной кислотам. Концентрированная серная кислота воздействует на ПЭВД, но при концентрациях ниже 80% ее действие заметно снижается и не проявляется в течение длительного времени. Из сильных кислот только азотная кислота и ее растворы вызывают окисление ПЭВД и, как следствие, падение механических и электрических свойств. Ниже показано, как изменяется масса т образцов ПЭВД (ПТР = 2 г/10 мин) и относительное удлинение при разрыве є после выдержки их в азотной кислоте [58, с. 369]: ' ,
50 %-я HNO, |
80%-я HN03 |
90%-я HNO. |
|
3 мес при 20°С: |
|||
Увеличение т, % |
0,2 |
1,9 |
6,9 |
Снижение е, % |
0 |
40 |
75 |
7 сут при 40°С: |
|||
Увеличение т, % |
0,4 |
9,7 |
14,9 |
Снижение е, % |
18 |
100 |
100 |
7 сут при 60°С: |
|||
Увеличение т, % |
4,5 |
17,1 |
23,7 |
Снижение е, % |
70 |
100 |
100 |
Из этих данных видно, что с повышением температуры и концентрации азотной кислоты ее действие на ПЭВД значительно усиливается.
Высокую стойкость ПЭВД проявляет по отношению к действию щелочей при любой их концентрации. Не оказывают заметного действия на ПЭВД и водные растворы основных, нейтральных и кислых солей. Очень слабо выражено действие таких сильных окислителей, как нитрит калия, перманганат калия и дихромат калия.
Галогены, как газообразные, так и жидкие, оказывают на ПЭВД значительное действие. Хлор вызывает значительное набухание ПЭВД и падение его прочности и относительного удлинения при разрыве [58, с. 371]. Аналогичное влияние на ПЭВД оказывает и фтор. Разбавленные растворы хлора действуют на ПЭВД очень слабо. Более сильное воздействие оказывают бром и иод. Они поглощаются полиэтиленом, замещая водород в макромолекулах, а также диффундируют сквозь пленки и пластины ПЭВД. При этом происходит значительное снижение механических характеристик. Все виды химических реагентов действуют на полиэтилен сильнее, если он находится при этом под механическим напряжением. Так, при механическом напряжении на ПЭВД воздействуют и поверхностно-активные вещества (ПАВ), усиливая процесс растрескивания, 162
Действие на ПЭВД органических жидкостей в значительной степени зависит от температуры. При комнатной температуре ПЭВД в течение длительного времени не растворяется в большом числе органических растворителей. Происходит диффузия и постепенное набухание. Имеется большой экспериментальный материал по этому вопросу. В приложении V приводятся данные по действию на ПЭВД как органических соединений, так и неорганических веществ при комнатной и при повышенной температуре. Эти данные позволяют судить как о характере, так и об интенсивности воздействия и влиянии на это воздействие повышенной температуры. Степень набухания ПЭВД в различных органических жидкостях различна и увеличивается с повышением температуры. При температуре приблизительно 60 °С ПЭВД растворим в ряде растворителей, в первую очередь в галогенуглеводородах, производных алифатических и ароматических углеводородов. Действие ПАВ на ПЭВД используется для испытания полимера на стойкость к растрескиванию под напряжением. На стойкость к растрескиванию влияют молекулярно-массовые характеристики полимера. Так, с увеличением молекулярной массы, а также с сужением ММР стойкость ПЭВД к растрескиванию падает. Присутствие низкомолекулярных фракций, наоборот, способствует росту этого показателя.
Способность ПЭВД, как и других полиолефинов в определенной мере взаимодействовать с различными соединениями используется на практике для направленного изменения свойств — химического модифицирования. Широко изучены процессы хлорирования, сульфохлорирования, фосфонирования, окисления с последующей прививкой различных функциональных групп и созданием привитых сополимеров. Большую роль играют процессы физико-химического модифицирования, сочетающие воздействие химических реагентов с воздействием УФ-излучения, ионизирующего излучения. Вопросы направленного изменения структуры и свойств ПЭВД и других полиолефинов подробно рассмотрены в монографии [154].