КОТЕЛЬНЫЕ УСТАНОВКИ И ПАРОГЕНЕРАТОРЫ
Воздухоподогреватели
Во принципу действия различают рекуперативные и регенеративные воздухоподогреватели. Рекуперативные воздухоподогреватели работают с неподвижной поверхностью нагрева, через которую непрерывно передается тепло от продуктов сгорания к воздуху. В регенеративных воздухоподогревателях поверхность нагрева омывается попеременно то продуктами сгорвния, нагреваясь при этом, то воздухом, отдавая ему тепло.
Воздухоподогреватель работает в условиях отличных от условий работы экономайзера и других элементов водопарового тракта. Здесь наименьшие температурные напоры между греющими продуктами сгорания и нагреваемым воздухом и самый низкий коэффициент теплопередачи. Поэтому его поверхность нагрева превышает суммарную поверхность нагрева всех элементов водопарового тракта и для котла мощного блока достигает десятков и сотен тысяч квадратных метров.
Основным видом рекуперативных воздухоподогревателей является трубчатый воздухоподогреватель (ТВП) с вертикально расположенной трубной системой (рис. 2.13). Эти воздухоподогреватели выполняют из стальных труб наружным диаметром 30-40 мм при толщине стенки 1,2- 1,5 мм. Трубы прямые вертикальные, концами приварены к трубным доскам и расположены в шахматном порядке.
Обычно внутри труб проходят продукты сгорания (продольное омыва - ние), тепло которых передается воздуху, движущемуся между трубами (поперечное омывание). Для образования перекрестного тока воздуха трубную систему по высоте делят на несколько ходов промежуточными перегород - 2.4. КОНВЕКТИВНЫЙ ПОВЕРХНОСТИ ЭКОНОМАЙЗЕРА 77
А-А Рис. 2 .13. Конструкция трубчатого воздухоподогревателя: сі — общий вид; б — узел 'феплеиия труб и тепловая компенсация; 1 — стальные грубы; 2,6 — верхняя и нижняя трубпые доски; 3 — компенсатор тепловых расширений; 4 •- воздухоперепускной короб; 5 — промежуточная трубная доска; 7, 8 — опорные колонны и горизонтальные балки. |
Ками — досками; в местах поворота установлены воздушные перепускные короба. Воздухоподогреватель с боков имеет наружные стальные плотные стенки, нижняя трубная доска опирается на металлическую раму, связанную с каркасом котла.
Трубная система расширяется при нагревании кверху, при этом верхняя трубная доска имеет возможность перемещений и в то же время обеспечивает плотность газохода за счет установки линзового компенсатора по всему ее периметру (рис. 2.13,6). Трубчатый воздухоподогреватель выполняют в виде отдельных кубов (секций), удобных для монтажа и транспорта, которые заполняют все сечение газохода. Трубные доски секций между собой также уплотняют линзовыми компенсаторами.
Рис. 2.14. Компоновки трубчатых воздухоподогревателей с различным подводом воздуха: а — двухпоточная; б — четырехпоточпая; в — двухпоточная и двухступенчатая; 1 — вход холодного воздуха; 2 — выход горячего воздуха; 3,4 — первая и вторая ступени экономайзера. |
В котлах средней мощности воздух в воздухоподогреватель подают по его широкой стороне (см. рис. 2.13, а) Такая схема называется однопо - точной. В паровых котлах большой мощности этого сечения недостаточно, и при однопоточной схеме высота воздушного хода достигает больших размеров. При этом уменьшается число ходов, что приводит к снижению расчетного температурного напора. Двухпоточная по воздуху схема (рис. 2.14,а) позволяет уменьшить высоту хода, увеличить число ходов и со-
Оіветственно повысить температурный напор. При очень большой мощности котла переходят к многопоточной схеме движения воздуха (рис. 2.14, б).
Из-за весьма невысокого значения коэффициента теплопередачи в ТВП (15 -20 Вт/м2К) и низкого температурного напора между газами и нагреваемым воздухом (50-80°С) обычно этот элемент имеет большую теплообмен - ную поверхность и габариты, особенно при большой тепловой мощности котла.
При последовательном размещении вдоль газового тракта экономайзера и воздухоподогревателя, называемым одноступенчатой компоновкой поверхностей в конвективной шахте, возникает ограничение температуры подогрева воздуха. Поскольку масса и теплоемкость воздуха меньше, чем эти же показатели в газовом потоке повышение температуры воздуха происходит в большей мере, чем снижение температуры газов и перепад температур между газами и воздухом по мере нагрева последнего снижается. Предельная температура подогрева воздуха в одноступенчатом воздухоподогревателе соответствует достижению минимального перепада температур газ-воздух At = 30°С и составляет 250-320°С (значения 300~320°С относятся к газоплотным котлам и топливам, имеющим А£вх = вух — t'm > 100°С).
Для подогрева воздуха до более высокой температуры (350-450°С) ТВП выполняют двухступенчатым, располагая вторую ступень ТВП выше поверхности экономайзера в зоне более высоких температур газов (рис. 2.14, в). Этим достигается значительное увеличение начального перепада температур газ-воздух, что обеспечивает дальнейший нагрев воздуха и способствует снижению габаритов второй ступени.
ТВП выполняют из углеродистой стали, для которой максимально допустимая температура металла не превышает 500°С, что при температуре подогрева воздуха до 400°С соответствует температуре продуктов сгорания не более 600°С. Обычно температура продуктов сгорания за пароперегревателем высокого давления выше, а потому для защиты металла второй ступени воздухоподогревателя, если в схеме котла нет промежуточного перегревателя, располагают вторую ступень экономайзера.
Трубчатые воздухоподогреватели просты по конструкции, надежны в работе, значительно более плотны в сравнении с воздухоподогревателями Других систем. Однако они в большей мере подвергаются коррозии, при конденсации влаги и паров H2SO4 если температура стенки будет ниже 90- Ю0°С, результате чего в трубах образуются сквозные отверстия и воздух перетекает на газовую сторону, увеличивая потери теплоты с уходящими газами и затраты на перекачку увеличенного объема продуктов сгорания. Защита труб от коррозии чаще всего достигается подогревом поступающего холодного воздуха в паровых калориферах (при подогреве воздуха свыше 50°С), либо путем рециркуляции части горячего воздуха на вход в ТВП (при нагреве до 50°С). Однако при этом снижается экономичность работы котла, так как одновременно происходит повышение температуры уходящих газов и рост потери теплоты с ними.
В последнем случае ограничиваются частичными мерами снижения скорости коррозии (обеспечением так называемой допустимой скорости коррозии), а первый ход воздуха отделяют от других, чтобы в случае коррозии нижнего трубного пакета иметь минимальную замену металла ТВП.
Основным типом регенеративного воздухоподогревателя электростанций является вращающийся регенеративный воздухоподогреватель (РВП), у которого поверхность теплообмена во вращающемся корпусе (роторе) попеременно находится в газовом потоке, нагреваясь от высокотемпературных газов, а затем поступает в холодный воздушный поток и греет воздух, отдавая ему избыточное тепло (рис. 2.15, а). В отличие от ТВП регенеративный воздухоподогреватель располагают вне пределов конвективной шахты и соединяют его с котлом газо - и воздухопроводами (рис. 2.15, в).
Поверхностью теплообмена служит плотная набивка из тонких гофрированных и плоских стальных листов, образующих каналы малого эквивалентного диаметра (d3 = 8-1-9 мм) для прохода продуктов сгорания и воздуха (рис. 2.15,6). Набивка в виде секций заполняет цилиндрический пустотелый ротор, который по сечению разделен глухими радиальными перегородками на изолированные друг от друга секторы. Ротор воздухоподогревателя медленно вращается (с частотой 1,5-2,2 об/мин), его вал имеет привод от электродвигателя через шестеренчатую передачу. Диаметр ротора РВП в зависимости от типоразмера составляет от 5,4 до 9,8 м, а высота его — от 1,4 до 2,4 м. В итоге организуется непрерывный нагрев за счет теплоты, аккумулированной набивкой в газовом потоке. Взаимное движение потоков — противоточное.
Применение волнистых (гофрированных) листов обеспечивает интенсификацию конвективного теплообмена и тем самым более быстрый нагрев набивки. Поверхность нагрева 1 м3 набивки составляет 300-340 м2, в то время как в ТВП этот показатель составляет около 50 м2/м3 объема. При значительном перепаде давлений между - воздушным и газовым потоками и невозможности полной их герметизации в условиях вращающегося ротора имеют место перетоки воздуха по радиусу ротора на границе раздела воздушной и газовой сторон, а также по периферии ротора.
Суммарные нормированные перетоки воздуха в РВП составляют до 20% при номинальной нагрузке и заметно возрастают при снижении ее. Перетоки воздуха приводят к перегрузке дымососов и дутьевых вентиляторов (на входе в РВП расход воздуха больше, чем необходимый для котла), снижается тепловая эффективность работы РВП и несколько увеличивается температура газов на выходе из него.
/ X J^V / / / / S / У / SS/////S/SS / Г Г / S V S / / / ]г / / S / S Рис. 2.15. Схема конструктивного выполнения РВП: а — общий вид аппарата; б — пластины теплообменной поверхности; в — соединение корпуса РВП с кот - л°м; ДГ — дымовые газы; ХВ — холодный воздух; ГВ — горячий воздух; 1 — вал; — нижняя и верхняя опоры; 4 — секция ротора; 5 — верхнее периферийное Уплотнение; 6 — зубья привода; 7 — наружная металлическая обшивка (кожух). |
Защита от перетоков достигается уплотнениями. Уплотнения различают: периферийное кольцевое на внешней поверхности ротора, внутреннее кольцевое вокруг вала РВП и радиальное, разделяющее воздушный и газовый потоки. Для уменьшения отрицательного эффекта при - сосов и утечки воздуха на крупных РВП применяют отсос воздуха из общего корпуса РВП. При этом в корпусе устанавливается пониженное давление и доля присоса воздуха в продукты сгорания может быть сведена к минимуму. Для исключения перегрузки дутьевого вентилятора отсос из корпуса направляют в короб воздуха после РВП (рис. 2.16).
• Регенеративные воздухоподогреватели подучили широкое применение на крупных энергоблоках. 'Зти воздухоподогреватели конструктивно сложнее, но они компактны, требуют меньшего расхода металла, имеют невысокое аэродинамическое сопротивление, коррозия набивки поверхности нагрева не приводит к увеличению присосов воздуха. Предварительный подогрев воздуха до 70-100°С перед его поступлением в воздухоподогреватель котла (трубчатый или регенеративный) обеспечивают в паровом калорифере, который выполняется в виде трубчатого теплообменника. Внутри вертикальных труб движется слабоперегретый пар с температурой около 120°С. Пар конденсируется на стенках труб и отдает теплоту конденсации потоку холодного воздуха, омывающему трубы снаружи перекрестным током.
Гж^с |
4 Ь |
Рис. 2.16. Организация отсоса воздуха из корпуса РВП: 1 — ротор; 2 — наружный корпус; 3 — дутьевой вентилятор; 4 — дымосос; 5 — вентилятор отсоса воздуха; 6 — греющие газы; 7 — горячий воздух; 8 —паровой калорифер; 9 — радиальные уплотнения; 10 — периферийные уплот- |
Для усиления теплообмена с воздухом трубы с воздушной стороны имеют оребрение (кольцевое или прутковое). По принципу работы паровой калорифер близок к трубчатому воздухоподогревателю, в котором газовая теплоотдающая среда заменена конденсирующимся паром.