Introduction to the Mathematical and Statistical Foundations of Econometrics

Transformations of Discrete Random Variables and Vectors

In the discrete case, the question Given a random variable or vector X and a Borel measure function or mapping g(x), how is the distribution of Y = g(X) related to the distribution of X? is easy to answer. If P[X є {хь x2,...}] = 1 and
g(x1), g(x2),... are all different, the answer is trivial: P(Y = g(xj)) = P(X = Xj). If some of the values g(x1), g(x2),... are the same, let {y1, y2,...} be the set of distinct values of g(x1), g(x2),... Then

TO

P(Y = yj) = £ I[y = g(Xi)]P(X = xi). (4.13)

i=1

It is easy to see that (4.13) carries over to the multivariate discrete case.

For example, if X is Poisson(X)-distributed and g(x) = sin2(nx) = (sin(nx))2 - and thus for m = 0, 1, 2, 3,..., g(2m) = sin2(nm) = 0 and g(2m + 1) = sin2(nm + n/2) = 1 - then P(Y = 0) = e-XY°TO=0 xlj/(2j)! and P(Y = 1) = e-kJ2j=0 X2j+1 /(2j + 1)!

As an application, let X = (X 1, X2)T, where X1 and X2 are independent Poisson(X) distributed, and let Y = X1 + X2. Then for y = 0, 1,2,...

TO TO

P(Y = y) = EE I[y = i + j]P(X1 = i, X2 = j)

i = 0 j = 0

(2X)y

= exp(-2X)^-. (4.14)

y!

Hence, Y is Poisson(2X) distributed. More generally, we have

Theorem 4.1: If for j = 1,..., k the random variables Xj are independent Poisson(X j) distributed, thenY^j=1 Xj is Poisson Qfkj=1 X j) distributed.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.