Introduction to the Mathematical and Statistical Foundations of Econometrics

Transformations of Absolutely Continuous Random Vectors 4.4.1. The Linear Case

Подпись: f (u1, u2) du1du2Подпись: f (u) du,

Подпись: F (x > -//
Подпись: / (— TO,xj ] x(— TO,x2]
Подпись: — TO —TO

Let X — (X1, X2)T be a bivariate random vector with distribution function

where x — (x1; x2)T, u — (u ь u2)T.

In this section I will derive the joint density of Y — AX + b, where A is a (nonrandom) nonsingular 2 x 2 matrix and b is a nonrandom 2 x 1 vector.

Recall from linear algebra (see Appendix I) that any square matrix A can be decomposed into

Подпись: (4.19)A — R —1L ■ D ■ U,

where R is a permutation matrix (possibly equal to the unit matrix I), L is a lower-triangular matrix with diagonal elements all equal to 1, U is an upper - triangular matrix with diagonal elements all equal to 1, and D is a diagonal matrix. The transformation Y = AX + b can therefore be conducted in five steps:

Z1 = UX Z 2 = DZ1

Z 3 = LZ2 (4.20)

Z4 = R-1 Z3 Y = Z4 + b.

Therefore, I will consider the first four cases, A = U, A = D, A = L, and A = R-1 for b = 0 and then the case A = I, b = 0.

Let Y = AX with A an upper-triangular matrix:

A = (1 1) • (4 21)

image231

Then

Along the same lines, it follows that, if A is a lower-triangular matrix, then the joint density of Y = AX is

Подпись: h( y) =^^ = f( Уь У2 - аУ1) = f( A 1 y )• дУ1дУ2 Next, let Y = AX with A a nonsingular diagonal matrix A = 14 0 (4.23)

0 a2 J ’

where a1 = 0, a2 = 0. Then Y1 = a1 X1 and Y2 = a2X2; hence, the joint distri­

bution function H(y) is

H(y) = P (Y1 < У1, Y2 < У2) = P (a1 X1 < У1, a2X2 < У2) =

P(X1 < y1/a1, X2 < y2/a2)

ЛМ y2/a2

= f (x1, x2)dx1dx2 if a1 > 0, a2 > 0,

— TO —TO

P(X1 < y1/a1, X2 > y2/a2)

yi/a1 to

= f (x1, x2)dx1dx2 if a1 > 0, a2 < 0,

TO yi/ai

P(X1 > y1/a1, X2 < y2/a2)

to yi/a2

= f (xb x2)dx1dx2 if a1 < 0, a2 > 0,

ПМ TO

image233

P(X1 > y1/a1, X2 > y2/a2)

Подпись: A
image235
image236

Now consider the case Y = AX, for instance, where A is the inverse of a permutation matrix (which is a matrix that permutates the columns of the unit matrix):

Then the joint distribution function H(y) of Y is

H(y) = P(Yi < yi, Y2 < у2) = P(X2 < yi, Xі < у2)

= F(У2, yi) = F(Ay), and the density involved is d 2 H (y)

h(y) = а я = f (У2, y1) = f (Ay). d y1d y2

Finally, consider the case Y = X + b with b = (b1, b2)T. Then the joint dis­tribution function H(y) of Y is

H(y) = P(Y1 < y1, Y2 < y2) = P(X1 < y1 - b1, X2 < y2 - Ьг)

= F(yi - bi, y2 - Ьг); hence, the density if Y is

d2 h (y)

h(y) = a a = f (yi - Ьъ y2 - b2) = f(y - b)

d yid y2

Combining these results, we find it is not hard to verify, using the decompo­sition (4.i9) and the five steps in (4.20), that for the bivariate case (k = 2):

Theorem 4.3: Let X be k-variate, absolutely continuously distributed with joint density f (x), and let Y = AX + b, where A is a nonsingular square ma­trix. Then Y is k-variate, absolutely continuously distributed with joint density h(y) = f (A-i(y - b))|det(A-i)|.

However, this result holds for the general case as well.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.