Introduction to the Mathematical and Statistical Foundations of Econometrics

The Uniform Distribution and Its Relation to the Standard Normal Distribution

As we have seen before in Chapter 1, the uniform [0,1] distribution has density

f (x) = 1 for 0 < x < 1, f (x) = 0 elsewhere.

image267
More generally, the uniform [a, b] distribution (denoted by U[a, b]) has density

where U and U2 are independent U[0, 1] distributed. Then Xj and X2 are

independent, standard normally distributed. This method is called the Box - Muller algorithm.

2.7. The Gamma Distribution

Подпись: g(x) Подпись: x“ 1exp(-x/в) Г (а) ва Подпись: x > 0, a > 0, в > 0.

The x2 distribution is a special case of a Gamma distribution. The density of the Gamma distribution is

This distribution is denoted by Г (а, в). Thus, the x2 distribution is a Gamma distribution with a = n/2 and в = 2.

The Gamma distribution has moment-generating function

тг(а, в)(0 = [1 - ві]-a, t < 1/в (4.44)

and characteristic function (рГ(а, в'() = [1 - в • i • t]—a - Therefore, the Г(а, в) distribution has expectation ав and variance ав2.

The Г(а, в) distribution with a = 1 is called the exponential distribution.

2.8. Exercises

1. Derive (4.2).

2. Derive (4.4) and (4.5) directly from (4.3).

3. Derive (4.4) and (4.5) from the moment-generating function (4.6).

4. Derive (4.8), (4.9), and (4.10).

5. If X is discrete and Y = g(x), do we need to require that g be Borel measurable?

6. Prove the last equality in (4.14).

7. Prove Theorem 4.1, using characteristic functions.

8. Prove that (4.25) holds for all four cases in (4.24).

9. Let X be a random variable with continuous distribution function F(x). Derive the distribution of Y = F(X).

10. The standard normal distribution has density f(x) = exp(-x2/2)Д/2л, x є К. Let X1 and X2 be independent random drawings from the standard normal distribution involved, and let Y1 = X1 + X2, Y2 = X1 — X2. Derive the joint density h(y1, y2) of Y1 and Y2, and show that Y1 and Y2 are indepen­dent. Hint: Use Theorem 4.3.

11. The exponential distribution has density f (x) = 9—1 exp(-x /9) if x > 0 and f (x) = 0 if x < 0, where 9 > 0 is a constant. Let X1 and X2 be inde­pendent random drawings from the exponential distribution involved and let Y1 = X1 + X2, Y2 = X1 — X2. Derive the joint density h( y1, y2) of Y1 and Y2. Hints: Determine first the support {(y1, y2)T є К2 : h(y1, y2) > 0} of h(y1, y2) and then use Theorem 4.3.

12. Let X ~ N(0, 1). Derive E[X2k] for k = 2, 3, 4, using the moment-generating function.

13. Let X1, X2,..., Xn be independent, standard normally distributed. Show that (1/»E"j=1 Xj is standard normally distributed.

14. Prove (4.31).

15. Show that for t < 1 /2, (4.33) is the moment-generating function of (4.34).

16. Explain why the moment-generating function of the tn distribution does not exist.

17. Prove (4.36).

18. Prove (4.37).

19. Let X1, X2,..., Xn be independent, standard Cauchy distributed. Show that (1/n)Ej=1 Xj is standard Cauchy distributed.

20. The class of standard stable distributions consists of distributions with char­

acteristic functions of the type p(t) = exp(—|t |a/a), where а є (0, 2]. Note that the standard normal distribution is stable with а = 2, and the standard Cauchy distribution is stable with а = 1. Show that for a random sample X1, X2, Xn from a standard stable distribution with parameter a, the ran­

dom variable Yn = n—1/a 'Yl’j=1 Xj has the same standard stable distribution (this is the reason for calling these distributions stable).

21. Let X and Y be independent, standard normally distributed. Derive the distri­bution of X/Y.

22. Derive the characteristic function of the distribution with density exp(—|x |)/2, —ж < x < ж.

23. Explain why the moment-generating function of the Fm, n distribution does not exist.

24. Prove (4.44).

25. Show that if U and U2 are independent U[0, 1] distributed, then X1 and X2 in (4.43) are independent, standard normally distributed.

26. If X and Y are independent Г(1, 1) distributed, what is the distribution of X-Y ?

APPENDICES

 

4. A. Tedious Derivations Derivation of (4.38):

Подпись: E ИпГ((п + 1)/2) f x2/n,

^ППГ(п/2) J (1 + x2/n)(n+1)/2 dX

пГ((п + 1)/2) Г 1 + x2/n d

4ПЛГ{п/2) ] (1 + x2/п)(п+1)/2 dX

пГ((п + 1)/2W 1 d

image272

^пЛГ(п/2) J (1 + x2/п)(п+1)/2

пГ((п - 1)/2 + 1) Г(п/2 - 1) п

--------------------------------------------- п = --------- .

Г(п/2) Г((п - 1)/2) п - 2

In this derivation I have used (4.36) and the fact that

1 = j h^2(x)dx

_ Г((п - 1)/2) f _________ 1________ dx

Мп - 2)пГ((п - 2)/2) J (1 + x2 /(п - 2))(п-1)/2 x

= Г((п - 1)/2W 1 d

^ЛГ((п - 2)/2) J (1 + x2)(п-і)/2

Derivation of (4.40): For m > 0, we have

m

Подпись: i ■ t ■ x)exp(-|t|)dt2П J exp(

-m

image274 image275

t ■ x) exp(-1)dt

 

1 f 1 f

— I exp[-(1 + i ■ x)t]dt +------ I exp[-(1 — i ■ x)t]dt

2n J 2n J

image276

00

2n (1 — i ■ x)

Подпись: [cos(m ■ x) — x ■ sin(m ■ x)].1 exp(—m)

n (1 + x2) n (1 + x2)

Letting m ^ to, we find that (4.40) follows. Derivation of (4.41):

image278

hm, n (x) Hm, n (x)

yn/2 1 exp(— y/2) .

X T(n/2)2n/1 d

mm/2 xm/2—1

nm/2 Y(m/2)Y(n/2) 2m/2+n/2

TO

Xf y",2+"2—[1+mx/n] y/2) dy

0

mm /2 xm/2 1

nm/2 Y(m/2)Y(n/2) [1 + m ■ x/n]m/2+n/2

TO

x j zm/2+n/2—X exp (—z) dz

Подпись: x > 0.mm/2 Y(m/2 + n/2) xm/2—1
nm/2 Y(m/2)Y(n/2) [1 + m ■ x/n]m/2+n/2 ’

Подпись: /

image281

Derivation of (4.42): It follows from (4.41) that

hence, if k < n /2, then

TO

J xk hm, n (x)dx 0

TO

mm/2 Tim/2 + n/2) f xm/2 + k-1

—_______________ і _________________ dx

nm/1 T(m/2)T(n/2) J (1 + m ■ x/n)m/2 + n/2
0

TO

)k Tm/2 + nmf_______ xm + *<r--1_____

T(m/2)T(n/2)j (1 + x)(m + Ml2 + (n - ЖГ-

0

Подпись: = (n/m )kT(m/2 + k)T(n/2 - к)
T(m /2)T(n/2)

Подпись: = (n/m )knk=0(m /2+j )

Ytj=1(n/2 - j )’

Подпись: TO j xhm,n(x)dx 0 Подпись: n n — 2 Подпись: if n > 3, №m,n = TO if n < 2, (4.46)

Подпись: if n > 5,

Подпись: TO J x2 hm,n (x)dx 0 Подпись: n2(m + 2) m (n — 2)(n — 4)

where the last equality follows from the fact that, by (4.36), T(a + k) = T(a) nk=0(« + J) for a > 0. Thus,

Подпись: (4.47)= to if n < 4.

The results in (4.42) follow now from (4.46) and (4.47).

4. B. Proof of Theorem 4.4

For notational convenience I will prove Theorem 4.4 for the case k = 2 only. First note that the distribution of Y is absolutely continuous because, for arbi­trary Borel sets B in K2,

P[Y є B] = P [G(X) є B] = P [X є G-1(B)] = j f(x)dx.

G-1(B)

If B has Lebesgue measure zero, then, because G is a one-to-one mapping, the Borel set A = G-1(B) has Lebesgue measure zero. Therefore, Y has density

Подпись: j h( y)dy■
Подпись: P [Y є B]

h(y), for instance, and thus for arbitrary Borel sets B in K2,

Choose a fixed y0 = (y0>1, y0,2)T in the support G(K2) of Y such that x0 = G-1(y0) is a continuity point of the density f of X and y0 is a continuity point of the density h of Y. Let Y(5b «2) = [y0,1, У0,1 + «1] x [70,2, У0,2 + «2] for

some positive numbers 51 and 52. Then, with X the Lebesgue measure

image293 image294

P [Y є Y(51,52)]

and similarly,

P [Y є Y(5b 52)] >( inf f(G-1(y))) X(G-1(Y(51, 52))).

yeY(31,«2) /

(4.49)

Подпись: h(y0) = lim lim ■ «1^0 52^0 It follows now from (4.48) and (4.49) that P [Y є Y(51,52)]

image296 Подпись: (4.50)

51 52

It remains to show that the latter limit is equal to |det[ J(y0)] |.

If we let G-1 (y) = (g* ( y), gf( y))T, it follows from the mean value theorem that for each element g*(y) there exists a Xj є [0, 1] depending on y and y0 such that g*(y) = g*У0) + JjУ0 + Xj(y - y0))(y - У0), where Jj(y) is the jth row of J(y). Thus, writing

D ( )_ ( J1(y0 + X1(y - y0)) - J1(y0)£

0(Л~ J2(y0 + X2(y - y0)) - J2(y0) J

= J0(y) - J(y0), (4.51)

for instance, we have G-1(y) = G-1(y0) + J(y0)(y - y0) + D0(y)(y - y0). Now, put A = J(y0)-1 and b = y0 - J(y0)-1 G-1(y0). Then,

Подпись: (4.52)G-1(y) = A-1(y - b) + D0(y)(y - y0);

hence,

G-1(Y(«i,«2)) = {x є К2:x

= A-1(y - b) + D0(y)(y - yo), y є Y(5i, «2)}-

(4.53)

The matrix A maps the set (4.53) onto A[G-1(Y(5i,52))]

= {x є К2 : x = y - b + A ■ D0(y)(y - У0), y є Y(«i, «2)},

(4.54)

def

where for arbitrary Borel sets B conformable with a matrix A, A [ B ] = {x : x = Ay, y є B}. Because the Lebesgue measure is invariant for location shifts (i. e., the vector b in (4.54)), it follows that

X (A[G-1(Y(«i, «2))])

= X ({x є К2 : x = y + A ■ D0(y)(y - y0), y є Y(«i, «2)}) -

(4.55)

Observe from (4.51) that

A ■ Do(y) = J(yo)-1 Do(y) = J(yo)-1 Jo(y) - I2 (4.56)

and

lim J(yo)-1 J o(y) = I2- (4.57)

У^Уо

Then

X (A[G-1(Y(«i,«2))])

= X ({x є К2 : x = yo + J(yo)-1 Jo(у)(У - Уо), y є Y(«i, «2)}) -

(4.58)

It can be shown, using (4.57), that

Подпись: (4.59)X (A[G-1(Y(«i,«2))]) lim lim —1 -—- 1

5i4-0 «24-0 X (Y(«i,«2))

Recall from Appendix I that the matrix A can be written as A = QDU, where Q is an orthogonal matrix, D is a diagonal matrix, and U is an upper-triangular matrix with diagonal elements all equal to 1. Let B = (0, 1) x (0, 1). Then it is not hard to verify in the 2 x 2 case that U maps B onto a parallelogram U[B] with the same area as B; hence, X(U[B]) = X(B) = 1. Consequently, the Lebesgue measure ofthe rectangle D[B] is the same as the Lebesgue measure of the set D[U [ B]]. Moreover, an orthogonal matrix rotates a set of points around the origin, leaving all the angles and distances the same. Therefore, the set A [B]
has the same Lebesgue measure as the rectangle D[B] :k(A[B]) = k(D[B ]) = |det[D]| = |det[A]|. Along the same lines, the following more general result can be shown:

Lemma 4.B.1: For a k x k matrix A and a Borel set B in Kk, к(A[B]) = |det[A] |к(B), where к is the Lebesgue measure on the Borel sets in Kk.

Thus, (4.59) now becomes

Подпись: 52^0 к (Y(5j. 82))

image301

limlim к (A[G"(V№.fe))])

hence,

Подпись: 51^0 8210 81 82 1

|det[ A]|

|det[ A-1]| = |det[J(^0)]|- (4.60)

Theorem 4.4 follows now from (4.50) and (4.60).

image303

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.