Introduction to the Mathematical and Statistical Foundations of Econometrics

The Poisson Distribution

A random variable X isPoisson(X)-distributediffor k = 0, 1, 2, 3,... and some

X > 0,

X k

P (X = k) = exp(-X)(4.7) k!

Recall that the Poisson probabilities are limits of the binomial probabilities (4.3) for n and p 10 such that np ^ X. It is left as an exercise to show that the expectation, variance, moment-generating function, and characteristic function of the Poisson(X) distribution are

Подпись: (4.8) (4.9) (4.10) (4.11) E [ X] = X, var(X) = X, mp(t) = exp[X(et -1)],

(Pp(t) = exp[X(e!4 -1)],

respectively.

4.1.2. The Negative Binomial Distribution

Consider a sequence of independent repetitions of a random experiment with constant probability p ofsuccess. Let the random variable X be the total number of failures in this sequence before the Mth success, where m > 1. Thus, X + m is equal to the number of trials necessary to produce exactly M successes. The probability P(X = k), k = 0, 1, 2,... is the product of the probability of obtaining exactly m - 1 successes in the first k + m - 1 trials, which is equal
/к + m 1 j pm-1(1 p)k+m-1— (m-1)

Подпись: to the binomial probability 'k + m _ 1 pm_і m _ 1 J ( p)

and the probability p of a success on the (k + m)th trial. Thus,

P (X = k) = ( k +nm_ _ M pm (1 — p)k, к = 0, 1, 2, 3,....

This distribution is called the negative binomial (m, p) - abbreviated NB (m, p) - distribution.

It is easy to verify from the preceding argument that an NB(m, p)-distributed random variable can be generated as the sum of m independent NB(1, p)- distributed random variables (i. e., if XuX1m are independent NB(1, p) distributed, then X = YTj=1 X1j is NB(m, p) distributed.) The moment­generating function of the NB(1, p) distribution is

Подпись: (0)p(1 _p)m nb(1, p)(t) = ^2 exp(k ■ t)

k=0

TO

= pJ2 ((1 _ p) e‘)k

k=0

= p

1 _ (1 _ p) Є*

provided that t < _ ln(1 _ p), hence, the moment-generating function of the NB(m, p) distribution is

m

1 _ (1 P_ p) et) , t < _In(1 _ p)• (4.12)

Подпись: PNB(m, p)(t) Подпись: p 1 _ (1 _ p) ei 4 Подпись: m Подпись: p(1 + (1 _ p) e^1 ) m 1 + (1 _ p)2 ) .

Replacing t by i ■ t in (4.12) yields the characteristic function

It is now easy to verify, using the moment generating function that, for an NB(m, p)-distributed random variable X,

E[X] = m(1 _ p)/p, var(X) = m (1 _ p)/p2.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.