Introduction to the Mathematical and Statistical Foundations of Econometrics

The Nonlinear Case

If we denote G (x) = Ax + b, G-i(y) = A-i( y - b), then the result of Theo­rem 4.3 reads h(y) = f (G-i(y))|det(9G-i(y)/9y)|. This suggests that Theo­rem 4.3 can be generalized as follows:

Theorem 4.4: Let X be k-variate, absolutely continuously distributed with joint density f(x),x = (xi,...,xk)T, and let Y = G(X), where G(x) = (gi(x),..., gk(x))T is a one-to-one mapping with inverse mapping x = G-i(y) = (gj(y),...,gl(y))T whose components are differentiable in the components ofy = (yi;yk)T. Let J(y) = dx/dy = dG-i(y)/dy, that is, J(y) is the matrix with i, j’s element dgf(y)/dyj, which is called the Jacobian. Then Y is k-variate, absolutely continuously distributed with joint density h(y) = f (G-i(y))|det(J(y))| for y in the set G(Rk) = {y є Rk :y = G(x), f (x) > 0, x є Kk} and h(y) = 0 elsewhere.

This conjecture is indeed true. Its formal proof is given in Appendix 4.B. An application of Theorem 4.4 is the following problem. Consider the function

f (x) = c ■ exp(-x2/2) if x > 0,

= 0 if x < 0. (4.26)

For which value of c is this function a density?

To solve this problem, consider the joint density f (x, x2) = c2 exp[-(x2 + xf)/2], xi > 0, x2 > 0, which is the joint distribution of X = (Xj, X2)T, where Xi and X2 are independent random drawings from the distribution with density (4.26). Next, consider the transformation Y = (Yi, Y2)T = G(X) defined by

Yi = УX2 + X2 є (0, то)

Y2 = arctan(Xi/X2) є (0, л/2).

The inverse X = G-i(Y) of this transformation is

Xi = Yi sin(Y2),

X2 = Yi cos(Y2)

with Jacobian

J (Y)= ( dXi/д Yi д Xi/д Y2 ( sin(Y2) Yicos(Y2)

J ( ) І, д X2/д Yi д X2/д Y2J cos(Y2) - Yisin(Y2^l '

Note that det[J(Y)] = — Yi. Consequently, the density h(y) = h(yi, y2) = f(G-i(y))|det(J(y))| is

h(Уь y2) = c2yi exp (—yjV2) for yi > 0 and 0 < y2 < л/2,

= 0 elsewhere;

hence,

TO n/2

i = j j c2yi exp (— y2 /2) ф>2Фт 00

TO

= c2(x/2) J yi exp (— y2 /2) dyi 0

= c2 л/2.

image237

Thus, the answer is c = V2/л:

Note that this result implies that

TO

Подпись: (4.27)I л = 1.

J V2n

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.